
ZK Email
Email Recovery

by Ackee Blockchain

5.8.2024

https://ackeeblockchain.com

Contents
1. Document Revisions. 5

2. Overview . 6

2.1. Ackee Blockchain . 6

2.2. Audit Methodology . 6

2.3. Finding classification. 7

2.4. Review team. 9

2.5. Disclaimer . 9

3. Executive Summary . 10

Revision 1.0 . 10

Revision 1.1 . 12

Revision 1.2 . 12

4. Summary of Findings. 13

Report revision 1.0 . 17

System Overview. 17

Trust Model . 21

H1: Multiple vulnerabilities in recovery configuration process 22

H2: Premature guardian configuration update in addGuardian function 25

M1: templateIdx function parameter check is in incorrect place 28

M2: Maximum guardians DoS . 30

M3: Selector collisions in UniversalEmailRecoveryModule. 33

M4: MAX + 1 validators may be configured in

UniversalEmailRecoveryModule . 35
L1: Validators can be added/removed before module initialization in

UniversalEmailRecovery . 38
L2: UniversalEmailRecovery validators cannot be disallowed after being

uninstalled . 41

2 of 82

https://ackeeblockchain.com

L3: cancelRecovery function does not revert when no recovery is in

process . 43

W1: isInitialized function returns false if initialized without guardians . . 45

W2: Unused bytes32 function parameter in EmailRecoveryManager 47

W3: Unnecessary computation of calldataHash value in

validateRecoverySubject function. 49

W4: Gas inefficiencies in UniversalRecoveryModule . 52

W5: Events missing parameters . 55

W6: Missing AddedGuardian event emission in setupGuardians function. 57

W7: ERC-4337 violation in onInstall . 59

I1: getTrustedRecoveryManager function returns public variable

emailRecoveryManager . 62
I2: Non-immutable state variables in EmailRecoveryManager contract 63

I3: Misleading naming . 64

I4: Unchecked return values in EnumerableGuardianMap library 65

I5: Use calldata in favor of memory in function parameters. 67

I6: Floating pragma . 69

I7: Missing zero-address validation in constructors . 70

I8: Modifiers not above constructors . 71

I9: Safe validateRecoverySubject optimization. 72

I10: Unused using-for directive . 74

Report revision 1.1. 75

M5: UniversalRecoveryModule arbitrary Safe recovery call 76

Report revision 1.2 . 78

Appendix A: How to cite . 79

Appendix B: Glossary of terms . 80

Appendix C: Wake outputs . 81

3 of 82

https://ackeeblockchain.com

C.1. Detectors. 81

4 of 82

https://ackeeblockchain.com

1. Document Revisions
1.0-draft Report draft 15.7.2024

1.0 Final report 17.7.2024

1.1 Fix review 30.7.2024

1.2 Fix review 5.8.2024

5 of 82

https://ackeeblockchain.com

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain
Ackee Blockchain is an auditing company based in Prague, Czech Republic,

specializing in audits and security assessments. Our mission is to build a

stronger blockchain community by sharing knowledge – we run free

certification courses School of Solana, Summer School of Solidity and teach

at the Czech Technical University in Prague. Ackee Blockchain is backed by

the largest VC fund focused on blockchain and DeFi in Europe, RockawayX.

2.2. Audit Methodology
1. Technical specification/documentation - a brief overview of the system is

requested from the client and the scope of the audit is defined.

2. Tool-based analysis - deep check with automated Solidity analysis tools

and Wake is performed.

3. Manual code review - the code is checked line by line for common

vulnerabilities, code duplication, best practices and the code architecture

is reviewed.

4. Local deployment + hacking - the contracts are deployed locally and we

try to attack the system and break it.

5. Unit and fuzz testing - run unit tests to ensure that the system works as

expected, potentially write missing unit or fuzz tests.

6 of 82

https://github.com/ackee-blockchain
https://ackeeblockchain.com/school-of-solana
https://www.ackeeblockchain.com/summer-school-of-solidity
https://rockawayx.com/
https://getwake.io
https://ackeeblockchain.com

2.3. Finding classification
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (such as deployment scripts,

compiler configuration, use of multi-signature wallets for owners, etc.) or

given a change in the codebase, then it will be assigned an impact rating of

Warning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity

Likelihood

High Medium Low -

Impact

High Critical High Medium -

Medium High Medium Low -

Low Medium Low Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

7 of 82

https://ackeeblockchain.com

Impact

• High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

• Medium - Code that activates the issue will result in consequences of

serious substance.

• Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

• Warning - The issue cannot be exploited given the current code and/or

configuration (such as deployment scripts, compiler configuration, use of

multi-signature wallets for owners, etc.), but could be a security

vulnerability if these were to change slightly. If we haven’t found a way to

exploit the issue given the time constraints, it might be marked as a

"Warning" or higher, based on our best estimate of whether it is currently

exploitable.

• Info - The issue is on the borderline between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration (see above) was to change.

Likelihood

• High - The issue is exploitable by virtually anyone under virtually any

circumstance.

• Medium - Exploiting the issue currently requires non-trivial preconditions.

• Low - Exploiting the issue requires strict preconditions.

8 of 82

https://ackeeblockchain.com

2.4. Review team

Member’s Name Position

Lukáš Rajnoha Lead Auditor

Michal Převrátil Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

9 of 82

https://ackeeblockchain.com

3. Executive Summary

Revision 1.0
ZK Email engaged Ackee Blockchain to perform a security review of the ZK

Email protocol with a total time donation of 8 engineering days in a period

between July 4 and July 12, 2024, with Lukáš Rajnoha as the lead auditor.

The audit was performed on the commit 4e70316 [1] and the scope was the

following:

• ./EmailRecoveryManager.sol

• ./modules/EmailRecoveryModule.sol

• ./modules/UniversalEmailRecoveryModule.sol

• ./handlers/EmailRecoverySubjectHandler.sol

• ./libraries/EnumerableGuardianMap.sol

• ./libraries/GuardianUtils.sol

• ./handlers/SafeRecoverySubjectHandler.sol

• ./factories/EmailRecoveryFactory.sol

• ./factories/EmailRecoveryUniversalFactory.sol

We began our review using static analysis tools, including Wake. We then took

a deep dive into the logic of the contracts. For testing and fuzzing, we have

involved Wake testing framework. During the review, we paid special attention

to:

• checking initialization and configuration processes of recovery modules,

• ensuring proper guardian state management,

• checking event emission consistency and completeness,

10 of 82

https://getwake.io
https://getwake.io
https://ackeeblockchain.com

• checking gas optimization and efficiency in smart contract operations,

• interaction with the ERC-7579 standard,

• detecting possible reentrancies in the code,

• ensuring access controls are not too relaxed or too strict,

• looking for common issues such as data validation.

Our review resulted in 26 findings, ranging from High to Info severity. The

most severe one (H1) originates from the ability to initialize the system

without guardians and a zero threshold, which can lead to an invalid

configuration and inconsistent guardian state. Another high severity issue

(H2) refers to premature update of the guardian configuration in the

addGuardian function, which can lead to a situation where the totalWeight

value (the sum of weights of guardians) does not accurately reflect the total

weight from accepted guardians, potentially making recovery impossible.

There are additionally 3 medium severity issues related mainly to the

configuration of validators in the modules and support for custom templates.

The code also contains multiple low severity issues with warnings/infos,

which are mostly overlooked trivial mistakes.

Ackee Blockchain recommends ZK Email to:

• disallow initialization of the system without guardians and a zero

threshold,

• ensure that the system accurately tracks the sum of weights from

accepted guardians,

• optimize gas usage of the contracts,

• address all other reported issues.

See Report revision 1.0 for the system overview and trust model.

11 of 82

https://eips.ethereum.org/EIPS/eip-7579
https://ackeeblockchain.com

Revision 1.1
ZK Email engaged Ackee Blockchain to perform a fix review, which was done

on July 31 on the given commit: 88371b8 [2]. From 26 findings, 23 issues were

fixed, and two warnings and one informational issue were acknowledged. No

additional changes were made to the codebase in scope outside of the fixes.

The status of all reported issues has been updated and can be seen in the

findings table.

After ongoing discussion with the client, an additional potential issue was

identified (M5).

See Report revision 1.1 for the revision overview.

Revision 1.2

An incremental fix review was performed on the given commit: 5b26a9a [3] to

review an additional fix for the issue M5.

See Report revision 1.2 for the revision overview.

[1] full commit hash: 4e7031693d8e97cfcbc42b7d063a748a0a53b952

[2] full commit hash: 88371b81a3dd4347dac8f2a5690c1434e86ff55f

[3] full commit hash: 5b26a9ade08257ccfcba14fe675f5343e306aa57

12 of 82

https://ackeeblockchain.com

4. Summary of Findings
The following table summarizes the findings we identified during our review.

Unless overridden for purposes of readability, each finding contains:

• a Description,

• an Exploit scenario,

• a Recommendation and if applicable

• a Fix.

There might often be multiple ways to solve or alleviate the issue, with

varying requirements regarding the necessary changes to the codebase. In

that case, we will try to enumerate them all, clarifying which solves the

underlying issue better (albeit possibly only with architectural changes) than

others.

Critical High Medium Low Warning Info Total

0 2 5 3 7 10 27

Table 2. Findings Count by Severity

Finding title Severity Reported Status

H1: Multiple vulnerabilities in

recovery configuration

process

High 1.0 Fixed

H2: Premature guardian

configuration update in

addGuardian function

High 1.0 Fixed

13 of 82

https://ackeeblockchain.com

Finding title Severity Reported Status

M1: templateIdx function

parameter check is in

incorrect place

Medium 1.0 Fixed

M2: Maximum guardians DoS Medium 1.0 Fixed

M3: Selector collisions in
UniversalEmailRecoveryModul

e

Medium 1.0 Fixed

M4: MAX + 1 validators may

be configured in
UniversalEmailRecoveryModul

e

Medium 1.0 Fixed

L1: Validators can be

added/removed before

module initialization in
UniversalEmailRecovery

Low 1.0 Fixed

L2: UniversalEmailRecovery

validators cannot be

disallowed after being

uninstalled

Low 1.0 Fixed

L3: cancelRecovery function

does not revert when no

recovery is in process

Low 1.0 Fixed

W1: isInitialized function

returns false if initialized

without guardians

Warning 1.0 Fixed

W2: Unused bytes32 function

parameter in
EmailRecoveryManager

Warning 1.0 Acknowledged

14 of 82

https://ackeeblockchain.com

Finding title Severity Reported Status

W3: Unnecessary

computation of calldataHash

value in

validateRecoverySubject

function

Warning 1.0 Fixed

W4: Gas inefficiencies in
UniversalRecoveryModule

Warning 1.0 Fixed

W5: Events missing

parameters

Warning 1.0 Fixed

W6: Missing AddedGuardian

event emission in

setupGuardians function

Warning 1.0 Fixed

W7: ERC-4337 violation in
onInstall

Warning 1.0 Acknowledged

I1: getTrustedRecoveryManager

function returns public

variable
emailRecoveryManager

Info 1.0 Fixed

I2: Non-immutable state

variables in

EmailRecoveryManager

contract

Info 1.0 Fixed

I3: Misleading naming Info 1.0 Fixed

I4: Unchecked return values

in EnumerableGuardianMap

library

Info 1.0 Fixed

15 of 82

https://ackeeblockchain.com

Finding title Severity Reported Status

I5: Use calldata in favor of

memory in function

parameters

Info 1.0 Fixed

I6: Floating pragma Info 1.0 Acknowledged

I7: Missing zero-address

validation in constructors

Info 1.0 Fixed

I8: Modifiers not above

constructors

Info 1.0 Fixed

I9: Safe

validateRecoverySubject

optimization

Info 1.0 Fixed

I10: Unused using-for

directive

Info 1.0 Fixed

M5: UniversalRecoveryModule

arbitrary Safe recovery call

Medium 1.1 Fixed

Table 3. Table of Findings

16 of 82

https://ackeeblockchain.com

Report revision 1.0

System Overview
This section contains an outline of the audited contracts. Note that this is

meant for understandability purposes and does not replace project

documentation.

Contracts

Contracts we find important for better understanding are described in the

following section.

EmailRecoveryModule

The EmailRecoveryModule is the ERC-7579 module installed on the smart

account, enabling account recovery. It is used with a specific validator, which

must be installed on the account before the module can be initialized. The

module enforces only a specific function selector (set during deployment) to

be called on the validator during the recovery process.

It contains the necessary onInstall and onUninstall functions. Both

functions delegate most of the recovery initialization and deinitialization

functionality to the EmailRecoveryManager contract, which stores most of the

recovery and configuration data.

The most important, recover function, is called from the

EmailRecoveryManager.completeRecovery function after a recovery threshold is

met to finalize the recovery request. After validity checks, the function calls

the specific validator, passing the given calldata received in the function to

finalize the recovery on the validator.

Helper functions such as getTrustedRecoveryManager, isInitialized,

isModuleType and isAuthorizedToRecover are included together with metadata

17 of 82

https://eips.ethereum.org/EIPS/eip-7579
https://ackeeblockchain.com

getters - module name and version.

UniversalEmailRecoveryModule

The UniversalEmailRecoveryModule functions similarly to EmailRecoveryModule

but offers broader functionality by allowing recovery via any validator. This

module maintains a mapping of allowed validators for each smart account

using the recovery module and the specific function selectors that will be

called on these validators. Validator management is handled through the

allowValidatorRecovery and disallowValidatorRecovery functions. Additional

helper functions, getAllowedValidators and getAllowedSelectors, are also

included.

EmailRecoveryManager

Both EmailRecoveryModule and UniversalEmailRecoveryModule use the

EmailRecoveryManager contract. It works closely with its coupled module, being

responsible for: * recovery initialization via the configureRecovery function, *

configuration management via the changeThreshold and updateRecoveryConfig

functions, * the recovery process itself, where the processRecovery function is

called once per each guardian for a recovery request, with the

completeRecovery function used for finalizing the recovery process once the

threshold is met.

For each smart account with the recovery module installed, the manager

stores recovery configurations and requests data, together with guardian

storage and their configuration.

Helper functions such as recovery configuration, requests, and template

getters are also present in the manager.

EnumerableGuardianMap

The account recovery module uses a custom GuardianStorage struct to

18 of 82

https://ackeeblockchain.com

manage guardian state. The EnumerableGuardianMap library, based on Open

Zeppelin’s EnumerableMap library, maps guardian addresses to their respective

data structs. The library includes helper functions for adding, removing, and

updating guardians in the mapping and checking if a given guardian exists in

the mapping.

GuardianUtils

The GuardianUtils library contains functions for guardian management, such

as initializing, adding and removing, accepting, and updating guardians'

status.

EmailRecoverySubjectHandler

EmailRecoverySubjectHandler defines and validates the subjects for recovery

emails. It handles two subject types: acceptance and recovery. The

acceptance subject is used when a guardian needs to accept becoming a

guardian for an account, while the recovery subject is used when an account

is being recovered. The handler includes functions to extract the account

address from both subject types, with additional helper functions.

SafeRecoverySubjectHandler

Same as EmailRecoverySubjectHandler, but specifically made ERC-7579

compatible Safes.

EmailRecoveryFactory

Factory used to setting up a new EmailRecoveryModule, deploys the module

together with its coupled EmailRecoveryManager, and initializes both contracts

as needed.

EmailRecoveryUniversalFactory

Same as EmailRecoveryFactory, but specifically made for

19 of 82

https://eips.ethereum.org/EIPS/eip-7579
https://ackeeblockchain.com

UniversalEmailRecoveryModule.

Actors

This part describes the actors of the system, their roles, and permissions.

Smart Account

The smart account is the account that is being secured by the account

recovery module.

Email Recovery Module

The Email Recovery Module is an ERC-7579 compatible executor module,

which is installed on the smart account, providing account recovery

functionality.

Guardian

An entity that can help recover the account. The smart account owner adds

guardians, who must accept the role before they can participate in the

recovery process. Depending on the configuration of the recovery module,

multiple guardians might be required for account recovery.

Validator

Validators are a specific type of ERC-7579 modules used during the validation

phase to determine if a transaction is valid and should be executed on the

account. Validators are called at the last stage in the recovery process to

recover lost access to the account. The specific implementation of the

validator recovery process can vary depending on the specific validator used.

Email Recovery Manager

The Email Recovery Manager contract works closely with its coupled Email

Recovery Module, managing the recovery process. Most interactions during

20 of 82

https://eips.ethereum.org/EIPS/eip-7579
https://eips.ethereum.org/EIPS/eip-7579
https://ackeeblockchain.com

the recovery process are done through the manager, which stores most of

the recovery and configuration data.

Subject Handler

Subject handlers define the subjects for recovery emails and how they should

be validated.

Factory

The Email Recovery Factories are helper contracts that deploy the recovery

modules with their respective managers. There is a specific factory for each

recovery module type.

Trust Model
Smart account owners have to trust the ERC-7579 validator modules installed

on the account and the guardians they add to the recovery configuration, as

they can start a new recovery process once accepted.

Smart account owners can trust the recovery module and the recovery

manager to handle the recovery process correctly.

Other actors should have no control over the smart account.

21 of 82

https://eips.ethereum.org/EIPS/eip-7579
https://ackeeblockchain.com

H1: Multiple vulnerabilities in recovery
configuration process

High severity issue

Impact: High Likelihood: Medium

Target: EmailRecoveryManager.sol Type: Logical error,

Double

initialization

Description

The recovery configuration process in the EmailRecoveryManager contract

contains multiple vulnerabilities that can lead to inconsistent states. These

issues stem from the ability to initialize the system without guardians and

inconsistencies in how the initialization state is checked and maintained.

The complex vulnerability mainly stems from the following two factors:

1. Allowing initialization without guardians and a zero threshold

The system allows initialization without guardians and with a zero

threshold, which can lead to issues when guardians are added later

without updating the threshold.

2. Insufficient initialization check

The configureRecovery function checks for initialization by verifying that

the threshold is zero instead of checking the initialized parameter in the

GuardianConfig struct. This approach allows the function to be called

multiple times if the system was initially configured without guardians

(with a zero threshold).

22 of 82

https://ackeeblockchain.com

Listing 1. Excerpt from EmailRecoveryManager

227 function configureRecovery(
228 address[] memory guardians,
229 uint256[] memory weights,
230 uint256 threshold,
231 uint256 delay,
232 uint256 expiry
233)
234 external
235 {
236 address account = msg.sender;
237 // Threshold can only be 0 at initialization.
238 // Check ensures that setup function can only be called once.
239 if (guardianConfigs[account].threshold > 0) {
240 revert SetupAlreadyCalled();
241 }

These issues create two main vulnerabilities:

1. Initializing the module without guardians and a zero threshold does not

require raising the threshold afterward when guardians are added. This

leads to an invalid recovery configuration. The guardians can start a new

recovery process through the processRecovery function; however, the

recovery will fail to be completed due to the zero threshold check at the

completeRecovery function. Considering the previous scenario — adding

guardians without updating the threshold — the user can call

configureRecovery again to set up a new guardian configuration, overriding

the already set-up GuardianConfigs. This results in more guardians being

stored in the recovery than accounted for.

Exploit scenario

1. The user initializes the module without guardians (with the threshold set

to zero).

2. The user adds several guardians using the addGuardian function without

23 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/EmailRecoveryManager.sol#L227-L242
https://ackeeblockchain.com

updating the threshold. The system now has more than one guardian but

still has a zero threshold, thus being in an invalid configuration.

3. The user calls the configureRecovery function again, setting up new

guardians. This overrides the totalWeight and guardianCount fields in the

GuardianConfigs struct, ignoring previously added guardians. The system

now has more guardians than accounted for.

Recommendation

To address these vulnerabilities, consider the following changes:

1. Disallow initialization without guardians.

Modify the configureRecovery function to require at least one guardian to

be set up and a non-zero threshold.

2. Use threshold to determine initialization status.

Remove the initialized field in the GuardianConfigs struct and use the

threshold to check if the system has been initialized.

Fix 1.1

The issue was fixed by disallowing the initialization of the system without

guardians and a zero threshold. The initialization status of the system is now

solely determined by the threshold.

Go back to Findings Summary

24 of 82

https://ackeeblockchain.com

H2: Premature guardian configuration update in
addGuardian function

High severity issue

Impact: High Likelihood: Medium

Target: GuardianUtils.sol Type: Logical error

Description

In the GuardianUtils library, the addGuardian function updates the

guardianCount and totalWeight fields in the GuardianConfigs struct before the

guardian is accepted. This premature update can lead to a situation where

the totalWeight does not accurately reflect the sum of weights from

accepted guardians.

Listing 2. Excerpt from GuardianUtils

147 function addGuardian(
148 mapping(address => EnumerableGuardianMap.AddressToGuardianMap) storage
 guardiansStorage,
149 mapping(address => IEmailRecoveryManager.GuardianConfig) storage
 guardianConfigs,
150 address account,
151 address guardian,
152 uint256 weight
153)
154 internal
155 {
156 // Initialized can only be false at initialization.
157 // Check ensures that setup function should be called first
158 if (!guardianConfigs[account].initialized) {
159 revert SetupNotCalled();
160 }
161 if (guardian == address(0) || guardian == account) {
162 revert InvalidGuardianAddress();
163 }
164 GuardianStorage memory guardianStorage =
 guardiansStorage[account].get(guardian);

25 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/libraries/GuardianUtils.sol#L147-L184
https://ackeeblockchain.com

165 if (guardianStorage.status != GuardianStatus.NONE) {
166 revert AddressAlreadyGuardian();
167 }
168 if (weight == 0) {
169 revert InvalidGuardianWeight();
170 }
171 guardiansStorage[account].set({
172 key: guardian,
173 value: GuardianStorage(GuardianStatus.REQUESTED, weight)
174 });
175 guardianConfigs[account].guardianCount++;
176 guardianConfigs[account].totalWeight += weight;
177 emit AddedGuardian(account, guardian);
178 }

totalWeight should only account for the sum of weights from accepted

guardians, which is not the case in the current implementation. This potential

difference allows users to accidentally set up an invalid configuration, making

recovery impossible in specific scenarios. Moreover, the recovery can be

initiated despite the configuration being invalid.

Exploit scenario

Consider the following exploit:

1. The user initially starts with 2 guardians with weight = 1 each, threshold

set to 2 (totalWeight = 2, threshold = 2)

2. The users adds a third guardian with weight = 1, not yet accepted

(totalWeight = 3, threshold = 2)

3. The user increases the threshold to 3 (totalWeight = 3, threshold = 3)

Although totalWeight is 3, the third guardian has not yet accepted, so the

actual usable weight is 2. In such a case, recovery will be impossible until the

third guardian accepts (which is not guaranteed).

26 of 82

https://ackeeblockchain.com

Recommendation

To fix the issue, ensure that recovery can be initiated only when the sum of

weight for accepted guardians reaches the threshold.

Fix 1.1

The issue was fixed by adding a dedicated acceptedWeight variable to track

the sum of weights from accepted guardians. The acceptedWeight variable is

used to determine if the recovery threshold can be met and if the recovery

process can be initiated.

Go back to Findings Summary

27 of 82

https://ackeeblockchain.com

M1: templateIdx function parameter check is in
incorrect place

Medium severity issue

Impact: Medium Likelihood: Medium

Target: EmailRecoverySubjectHandler

.sol,

SafeRecoverySubjectHandler.

sol

Type: Code quality

Description

The acceptGuardian and processRecovery functions in the EmailRecoveryManager

contract validate the templateIdx function parameter, reverting if it is non-

zero. This validation seems to occur in the wrong place and should be moved

to the validateAcceptanceSubject and validateRecoverySubject functions of

EmailRecoverySubjectHandler and SafeRecoverySubjectHandler contracts.

Additionally, this condition hinders the ability to use custom subject handlers

with different templates.

Exploit scenario

Consider creating a new example subject handler using a different template

(presumably using a non-zero tempalteIdx parameter) in the future. The new

subject handler will not be usable since acceptGuardian and processRecovery

functions will revert when templateIdx != 0.

Recommendation

Move templateIdx parameter validation to EmailRecoverySubjectHandler and

SafeRecoverySubjectHandler contracts.

28 of 82

https://ackeeblockchain.com

Fix 1.1

The issue was fixed by moving the templateIdx parameter validation to

EmailRecoverySubjectHandler and SafeRecoverySubjectHandler contracts.

Go back to Findings Summary

29 of 82

https://ackeeblockchain.com

M2: Maximum guardians DoS

Medium severity issue

Impact: High Likelihood: Low

Target: EnumerableGuardianMap.sol Type: Denial of service

Description

The library EnumerableGuardianMap is a modified version of the EnumerableMap

library from OpenZeppelin. It allows adding, updating, and removing guardians

from a guardian map. The add and update operations are both implemented in

a single set function.

Listing 3. Excerpt from EnumerableGuardianMap

62 function set(
63 AddressToGuardianMap storage map,
64 address key,
65 GuardianStorage memory value
66)
67 internal
68 returns (bool)
69 {
70 uint256 length = map._keys.length();
71 if (length >= MAX_NUMBER_OF_GUARDIANS) {
72 revert MaxNumberOfGuardiansReached();
73 }
74 map._values[key] = value;
75 return map._keys.add(key);
76 }

Because of the MAX_NUMBER_OF_GUARDIANS check, the execution reverts when

updating an already inserted guardian with the maximum number of

guardians registered.

The function set is used in the update context in the

30 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/libraries/EnumerableGuardianMap.sol#L62-L76
https://ackeeblockchain.com

GuardianUtils.updateGuardianStatus function and, consequently, in the

EmailRecoveryManager.acceptGuardian function.

Listing 4. Excerpt from EmailRecoveryManager.acceptGuardian

330 GuardianStorage memory guardianStorage = getGuardian(account, guardian);
331 if (guardianStorage.status != GuardianStatus.REQUESTED) {
332 revert InvalidGuardianStatus(guardianStorage.status,
 GuardianStatus.REQUESTED);
333 }
334 guardiansStorage.updateGuardianStatus(account, guardian,
 GuardianStatus.ACCEPTED);

As a result, a guardian cannot accept the invitation if the maximum number of

guardians is registered.

Exploit scenario

A user registers the maximum number of guardians (32). Due to the incorrect

implementation of the set function, the guardians cannot accept the

invitation until one of the guardians is removed.

Recommendation

Use the return value of map._keys.add(key) indicating whether the key was

not already present in the map. Perform the MAX_NUMBER_OF_GUARDIANS check

only if the guardian was not already present in the map.

Fix 1.1

The issue was fixed by modifying the EnumerableGuardianMap.set function,

which now checks the return value of map._keys.add(key) and uses the >

inequation sign instead of >= in the MAX_NUMBER_OF_GUARDIANS check.

Listing 5. Excerpt from EnumerableGuardianMap

62 function set(

31 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/EmailRecoveryManager.sol#L330-L335
https://github.com/zkemail/email-recovery/blob/88371b81a3dd4347dac8f2a5690c1434e86ff55f/src/libraries/EnumerableGuardianMap.sol#L62-L77
https://ackeeblockchain.com

63 AddressToGuardianMap storage map,
64 address key,
65 GuardianStorage memory value
66)
67 internal
68 returns (bool)
69 {
70 map._values[key] = value;
71 bool success = map._keys.add(key);
72 uint256 length = map._keys.length();
73 if (success && length > MAX_NUMBER_OF_GUARDIANS) {
74 revert MaxNumberOfGuardiansReached();
75 }
76 return success;

Go back to Findings Summary

32 of 82

https://ackeeblockchain.com

M3: Selector collisions in
UniversalEmailRecoveryModule

Medium severity issue

Impact: Medium Likelihood: Medium

Target: UniversalEmailRecoveryModul

e.sol

Type: Data validation

Description

The contract UniversalEmailRecoveryModule is a generalized ERC-7579

executor module for recovery of smart accounts. It allows registering multiple

validator modules that can be recovered. In order to select the correct

validator to recover based on a function selector, the selectorToValidator

mapping is used.

Listing 6. Excerpt from UniversalEmailRecoveryModule

66 mapping(bytes4 selector => mapping(address account => address validator))
 internal
67 selectorToValidator;

However, the UniversalEmailRecoveryModule contract does not handle cases

where two or more validator modules are registered with the same function

selector. In such cases, the selectorToValidator mapping will be overwritten,

leading to a collision and the inability to recover the original validator module.

Exploit scenario

A user accidentally registers two validator modules, A and B (in this order),

with the same function selector. The selectorToValidator mapping will

contain only the last registered validator module, B, and the original validator

module, A, cannot be recovered.

33 of 82

https://eips.ethereum.org/EIPS/eip-7579
https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L66-L67
https://ackeeblockchain.com

Recommendation

Either revert the execution when registering a validator module with a

colliding function selector or implement a mechanism to handle collisions.

Fix 1.1

The simplest solution to this was to remove the

selectorToValidator mapping and just pass the validator in with

the calldata to recover.

— ZK Email Team

Fixed by removing the selectorToValidator mapping. In the recover function,

the validator is now decoded from the calldata:

Listing 7. Excerpt from UniversalEmailRecoveryModule

278 function recover(address account, bytes calldata recoveryData) external {
279 if (msg.sender != emailRecoveryManager) {
280 revert NotTrustedRecoveryManager();
281 }
282 (address validator, bytes memory recoveryCalldata) =
283 abi.decode(recoveryData, (address, bytes));
284 bytes4 selector;
285 assembly {
286 selector := mload(add(recoveryCalldata, 32))
287 }

Go back to Findings Summary

34 of 82

https://github.com/zkemail/email-recovery/blob/88371b81a3dd4347dac8f2a5690c1434e86ff55f/src/modules/UniversalEmailRecoveryModule.sol#L278-L289
https://ackeeblockchain.com

M4: MAX + 1 validators may be configured in
UniversalEmailRecoveryModule

Medium severity issue

Impact: High Likelihood: Low

Target: UniversalEmailRecoveryModul

e.sol

Type: Logical error

Description

The following if condition in the UniversalEmailRecoveryModule contract

should ensure that no more than MAX_VALIDATORS validators are configured.

Listing 8. Excerpt from

UniversalEmailRecoveryModule.allowValidatorRecovery

151 if (validatorCount[msg.sender] > MAX_VALIDATORS) {
152 revert MaxValidatorsReached();
153 }
154 validators[msg.sender].push(validator);
155 validatorCount[msg.sender]++;

However, due to the incorrect inequality operator, the condition allows

configuring MAX_VALIDATORS + 1 validators.

Exploit scenario

A UniversalEmailRecoveryModule user accidentally configures MAX_VALIDATORS +

1 (33) validators. Because the function getAllowedValidators uses the

MAX_VALIDATORS constant, metadata for the 33rd validator is not cleared in

onUninstall.

Listing 9. Excerpt from UniversalEmailRecoveryModule.onUninstall

208 address[] memory allowedValidators = getAllowedValidators(msg.sender);

35 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L151-L155
https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L208-L217
https://ackeeblockchain.com

209 for (uint256 i; i < allowedValidators.length; i++) {
210 bytes4 allowedSelector =
 allowedSelectors[allowedValidators[i]][msg.sender];
211 delete selectorToValidator[allowedSelector][msg.sender];
212 delete allowedSelectors[allowedValidators[i]][msg.sender];
213 }
214 validators[msg.sender].popAll();
215 validatorCount[msg.sender] = 0;

When the UniversalEmailRecoveryModule is installed again, the validator is still

considered valid, and due to the validatorCount counter being reset to zero,

removing the validator is impossible.

Recommendation

Change the inequation sign from > to >= in the allowValidatorRecovery

function to ensure that no more than MAX_VALIDATORS validators can be

configured.

Fix 1.1

The issue was fixed by changing the inequation sign from > to >= in the

allowValidatorRecovery function.

Listing 10. Excerpt from UniversalEmailRecoveryModule

151 function allowValidatorRecovery(
152 address validator,
153 bytes memory isInstalledContext,
154 bytes4 recoverySelector
155)
156 public
157 onlyWhenInitialized
158 withoutUnsafeSelector(recoverySelector)
159 {
160 if (
161 !IERC7579Account(msg.sender).isModuleInstalled(
162 TYPE_VALIDATOR, validator, isInstalledContext
163)
164) {

36 of 82

https://github.com/zkemail/email-recovery/blob/88371b81a3dd4347dac8f2a5690c1434e86ff55f/src/modules/UniversalEmailRecoveryModule.sol#L151-L170
https://ackeeblockchain.com

165 revert InvalidValidator(validator);
166 }
167 if (validatorCount[msg.sender] >= MAX_VALIDATORS) {
168 revert MaxValidatorsReached();
169 }

Go back to Findings Summary

37 of 82

https://ackeeblockchain.com

L1: Validators can be added/removed before
module initialization in UniversalEmailRecovery

Low severity issue

Impact: Medium Likelihood: Low

Target: UniversalEmailRecoveryModul

e.sol

Type: Logical error

Description

The intended flow for initializing the UniversalEmailRecoveryModule is first

installing the module, during which the onInstall function is called. This

function initializes the validators linked list via the

validators[msg.sender].init() function. Then, more validators can potentially

be added with the allowValidatorRecovery function. However,

allowValidatorRecovery does not check if the module has yet been installed

on msg.sender. Linked lists used in the code should be initialized before use,

which is not guaranteed here. Otherwise, the linked list is incorrectly set up.

The same issue is present in the disallowValidatorRecovery function.

Example from allowValidatorRecovery:

Listing 11. Excerpt from UniversalEmailRecoveryModule

135 function allowValidatorRecovery(
136 address validator,
137 bytes memory isInstalledContext,
138 bytes4 recoverySelector
139)
140 public
141 withoutUnsafeSelector(recoverySelector)
142 {
143 if (
144 !IERC7579Account(msg.sender).isModuleInstalled(
145 TYPE_VALIDATOR, validator, isInstalledContext

38 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L135-L161
https://ackeeblockchain.com

146)
147) {
148 revert InvalidValidator(validator);
149 }
150 if (validatorCount[msg.sender] > MAX_VALIDATORS) {
151 revert MaxValidatorsReached();
152 }
153 validators[msg.sender].push(validator);
154 validatorCount[msg.sender]++;
155 allowedSelectors[validator][msg.sender] = recoverySelector;
156 selectorToValidator[recoverySelector][msg.sender] = validator;
157 emit NewValidatorRecovery({ validatorModule: validator,
 recoverySelector: recoverySelector });
158 }

Exploit scenario

The user calls the allowValidatorRecovery function before installing the

module, which adds a new validator to the linked list. Since the linked list was

not initialized, its current state is as follows:

SENTINEL -> new_validator

While the correct state (if initialized beforehand) should be:

SENTINEL -> new_validator -> SENTINEL

Recommendation

Ensure that adding and removing validators is only possible when the module

is installed (thus, the linked list has been initialized). Consider adding a

modifier to the allowValidatorRecovery and disallowValidatorRecovery

functions, reverting if the module is not installed on msg.sender.

Fix 1.1

The issue was fixed by adding the onlyWhenInitialized modifier to the

39 of 82

https://ackeeblockchain.com

allowValidatorRecovery and disallowValidatorRecovery functions. The modifier

checks if the validators sentinel list has been initialized for the given account

(on module initialization). If not, the function reverts.

Go back to Findings Summary

40 of 82

https://ackeeblockchain.com

L2: UniversalEmailRecovery validators cannot be
disallowed after being uninstalled

Low severity issue

Impact: Low Likelihood: Medium

Target: UniversalEmailRecoveryModul

e.sol

Type: Logical error

Description

In the UniversalEmailRecovery module, to allow a validator, the validator first

has to be installed on the account. Otherwise, the allowValidatorRecovery

function in UniversalEmailRecovery module reverts with InvalidValidator error.

Listing 12. Excerpt from UniversalEmailRecoveryModule

135 function allowValidatorRecovery(
136 address validator,
137 bytes memory isInstalledContext,
138 bytes4 recoverySelector
139)
140 public
141 withoutUnsafeSelector(recoverySelector)
142 {
143 if (
144 !IERC7579Account(msg.sender).isModuleInstalled(
145 TYPE_VALIDATOR, validator, isInstalledContext
146)
147) {
148 revert InvalidValidator(validator);
149 }

This check is also present in the disallowValidatorRecovery function.

Therefore, if an allowed validator gets uninstalled from the smart account,

disallowing the validator will revert with InvalidValidator.

41 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L135-L149
https://ackeeblockchain.com

Listing 13. Excerpt from UniversalEmailRecoveryModule

171 function disallowValidatorRecovery(
172 address validator,
173 address prevValidator,
174 bytes memory isInstalledContext,
175 bytes4 recoverySelector
176)
177 public
178 {
179 if (
180 !IERC7579Account(msg.sender).isModuleInstalled(
181 TYPE_VALIDATOR, validator, isInstalledContext
182)
183) {
184 revert InvalidValidator(validator);
185 }

The user allows a validator in the module and then uninstalls this validator

from the smart account. The user tries to disallow the validator afterward,

but it will fail with InvalidValidator. The user then has to reinstall the

validator to be able to disallow it in the module.

Recommendation

To address this issue, remove the check for the validator in the

disallowValidatorRecovery function. This allows the user to remove the

validator even if it was uninstalled from the account.

Fix 1.1

The issue was fixed by removing the check for the validator in the

disallowValidatorRecovery function. This allows the user to disallow a

validator even after it has been uninstalled from the smart account.

Go back to Findings Summary

42 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L171-L185
https://ackeeblockchain.com

L3: cancelRecovery function does not revert when
no recovery is in process

Low severity issue

Impact: Low Likelihood: Low

Target: EmailRecoveryManager.sol Type: Logical error

Description

The cancelRecovery function in EmailRecoveryManager contract does not revert

when no recovery is being processed. Thus, the RecoveryCancelled event is

emitted regardless of whether a recovery is in progress, which can cause

issues with off-chain tracking of the recovery status.

Listing 14. Excerpt from EmailRecoveryManager

455 function cancelRecovery() external virtual {
456 delete recoveryRequests[msg.sender];
457 emit RecoveryCancelled(msg.sender);
458 }

Recommendation

Revert in the cancelRecovery function if no recovery is in process.

Fix 1.1

The issue was fixed by reverting in the cancelRecovery function if no recovery

is in process.

Listing 15. Excerpt from EmailRecoveryManager

465 function cancelRecovery() external virtual {
466 if (recoveryRequests[msg.sender].currentWeight == 0) {
467 revert NoRecoveryInProcess();

43 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/EmailRecoveryManager.sol#L455-L458
https://github.com/zkemail/email-recovery/blob/88371b81a3dd4347dac8f2a5690c1434e86ff55f/src/EmailRecoveryManager.sol#L465-L471
https://ackeeblockchain.com

468 }
469 delete recoveryRequests[msg.sender];
470 emit RecoveryCancelled(msg.sender);
471 }

Go back to Findings Summary

44 of 82

https://ackeeblockchain.com

W1: isInitialized function returns false if
initialized without guardians

Impact: Warning Likelihood: N/A

Target: EmailRecoveryModule.sol,

UniversalEmailRecoveryModul

e.sol

Type: Logical error

Description

The isInitialized function in both EmailRecoveryModule and

UniversalEmailRecoveryModule contracts checks for initialization by verifying

that the threshold is non-zero. The module can, however, be initialized

without guardians and with a zero threshold. In such a case, the function

incorrectly returns false.

Listing 16. Excerpt from EmailRecoveryModule

118 function isInitialized(address smartAccount) external view returns (bool) {
119 return
 IEmailRecoveryManager(emailRecoveryManager).getGuardianConfig(smartAccount).
 threshold
120 != 0;
121 }

Recommendation

This issue closely relates with H1. Fixing the related, higher-severity issue

using the provided recommendations also addresses this finding.

Consider adding a function that indicates whether the module is in a state

where recovery is possible. When the isInitialized function returns true, it

might indicate that the module is ready for recovery, which might not

necessarily be the case. It could happen that not enough guardians have

45 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/EmailRecoveryModule.sol#L118-L121
https://ackeeblockchain.com

been accepted to reach the required threshold set during configuration, thus

making recovery impossible.

Fix 1.1

The issue was fixed in conjunction with the fix for H1 by disallowing

initialization without guardians and with a zero threshold. Additionally, a new

canStartRecoveryRequest function was added to indicate whether the module

is in a state where recovery is possible (i.e., enough guardians have been

accepted to reach the required threshold).

Go back to Findings Summary

46 of 82

https://ackeeblockchain.com

W2: Unused bytes32 function parameter in
EmailRecoveryManager

Impact: Warning Likelihood: N/A

Target: EmailRecoveryManager.sol Type: Code quality

Description

In the EmailRecoveryManager contract, the functions acceptGuardian and

processRecovery both have an unused function parameter of type bytes32.

This parameter is declared without a name and never used within the function

bodies. Unused parameters can lead to confusion and may unnecessarily

increase gas costs.

Listing 17. Excerpt from EmailRecoveryManager

303 function acceptGuardian(
304 address guardian,
305 uint256 templateIdx,
306 bytes[] memory subjectParams,
307 bytes32
308)

Listing 18. Excerpt from EmailRecoveryManager

352 function processRecovery(
353 address guardian,
354 uint256 templateIdx,
355 bytes[] memory subjectParams,
356 bytes32

Recommendation

Refactor the acceptGuardian and processRecovery functions to remove the

unused bytes32 parameter.

47 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/EmailRecoveryManager.sol#L303-L308
https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/EmailRecoveryManager.sol#L352-L356
https://ackeeblockchain.com

Acknowledgment 1.1

Documentation was updated, describing why the unused bytes32 parameter is

included in the given functions.

Go back to Findings Summary

48 of 82

https://ackeeblockchain.com

W3: Unnecessary computation of calldataHash
value in validateRecoverySubject function

Impact: Warning Likelihood: N/A

Target: EmailRecoveryManager.sol Type: Gas optimization

Description

The processRecovery function in the EmailRecoveryManager contract uses the

subject handler’s validateRecoverySubject function to validate the

subjectParams function parameter and return the parsed accountInEmail and

calldataHash values. However, the calldataHash value is stored only after the

threshold in the validateRecoverySubject function is met; otherwise, the value

is unused. If multiple guardians are needed for recovery, calldataHash is

computed more than once and only used (stored) the last time. This results in

unnecessary gas spending.

Listing 19. Excerpt from EmailRecoveryManager

352 function processRecovery(
353 address guardian,
354 uint256 templateIdx,
355 bytes[] memory subjectParams,
356 bytes32
357)
358 internal
359 override
360 {
361 if (templateIdx != 0) {
362 revert InvalidTemplateIndex();
363 }
364 (address account, bytes32 calldataHash) =
 IEmailRecoverySubjectHandler(subjectHandler)
365 .validateRecoverySubject(templateIdx, subjectParams, address(this));
366 if
 (!IEmailRecoveryModule(emailRecoveryModule).isAuthorizedToRecover(account))
 {
367 revert RecoveryModuleNotAuthorized();

49 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/EmailRecoveryManager.sol#L352-L395
https://ackeeblockchain.com

368 }
369 // This check ensures GuardianStatus is correct and also implicitly that
 the
370 // account in email is a valid account
371 GuardianStorage memory guardianStorage = getGuardian(account, guardian);
372 if (guardianStorage.status != GuardianStatus.ACCEPTED) {
373 revert InvalidGuardianStatus(guardianStorage.status,
 GuardianStatus.ACCEPTED);
374 }
375 RecoveryRequest storage recoveryRequest = recoveryRequests[account];
376 recoveryRequest.currentWeight += guardianStorage.weight;
377 uint256 threshold = guardianConfigs[account].threshold;
378 if (recoveryRequest.currentWeight >= threshold) {
379 uint256 executeAfter = block.timestamp +
 recoveryConfigs[account].delay;
380 uint256 executeBefore = block.timestamp +
 recoveryConfigs[account].expiry;
381 recoveryRequest.executeAfter = executeAfter;
382 recoveryRequest.executeBefore = executeBefore;
383 recoveryRequest.calldataHash = calldataHash;
384 emit RecoveryProcessed(account, executeAfter, executeBefore);
385 }
386 }

The gas required for computation varies depending on whether

EmailRecoverySubjectHandler or SafeRecoverySubjectHandler is used as the

subject handler. The gas spent in

SafeRecoverySubjectHandler.validateRecoverySubject depends on the length

of the owners of the Safe Smart Account.

Recommendation

To optimize the gas usage, consider splitting the validateRecoverySubject

function into two functions:

1. validateRecoverySubject - validates the recovery subject and returns the

accountInEmail value.

2. parseRecoveryCalldataHash - computes and returns the calldataHash value.

50 of 82

https://ackeeblockchain.com

In processRecovery function, use validateRecoverySubject to get

accountInEmail for validation purposes and only use the

parseRecoveryCalldataHash function when the threshold is met, and

calldataHash needs to be computed and stored.

Fix 1.1

Gas usage was optimized by splitting the validateRecoverySubject function

into two separate functions: validateRecoverySubject (validates the recovery

subject) and parseRecoveryCalldataHash (computes the calldataHash). The

calldataHash value is now computed and stored only when the threshold is

met.

Go back to Findings Summary

51 of 82

https://ackeeblockchain.com

W4: Gas inefficiencies in UniversalRecoveryModule

Impact: Warning Likelihood: N/A

Target: UniversalEmailRecoveryModul

e.sol

Type: Gas optimization

Description

The UniversalRecoveryModule contract is not gas-efficient. The main issues

are:

• Unnecessary checks in the recover function.

• Inefficient implementations of isAuthorizedToRecover and

getAllowedSelectors functions.

Specific issues include:

1. In the recover function:

Listing 20. Excerpt from UniversalEmailRecoveryModule

251 function recover(address account, bytes calldata recoveryCalldata)
 external {
252 if (msg.sender != emailRecoveryManager) {
253 revert NotTrustedRecoveryManager();
254 }
255 bytes4 selector = bytes4(recoveryCalldata[:4]);
256 address validator = selectorToValidator[selector][account];
257 bytes4 allowedSelector = allowedSelectors[validator][account];
258 if (allowedSelector != selector) {
259 revert InvalidSelector(selector);
260 }
261 _execute({ account: account, to: validator, value: 0, data:
 recoveryCalldata });
262 emit RecoveryExecuted();
263 }

52 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L251-L267
https://ackeeblockchain.com

The check against the allowedSelector variable is unnecessary and can be

replaced with a simple non-zero address check for the validator.

2. In the isAuthorizedToRecover function:

Listing 21. Excerpt from UniversalEmailRecoveryModule

237 function isAuthorizedToRecover(address smartAccount) external view
 returns (bool) {
238 return getAllowedValidators(smartAccount).length > 0;
239 }

The function computes validator count through the getAllowedValidators

function instead of using the validatorCount variable.

3. In the getAllowedSelectors function:

Listing 22. Excerpt from UniversalEmailRecoveryModule

294 function getAllowedSelectors(address account) external view returns
 (bytes4[] memory) {
295 address[] memory allowedValidators = getAllowedValidators(account);
296 uint256 allowedValidatorsLength = allowedValidators.length;
297 bytes4[] memory selectors = new bytes4[](allowedValidatorsLength);
298 for (uint256 i; i < allowedValidatorsLength; i++) {
299 selectors[i] = allowedSelectors[allowedValidators[i]][account];
300 }
301 return selectors;
302 }

The function computes validator count through the getAllowedValidators

function instead of using the validatorCount variable.

Recommendation

Consider refactoring the UniversalRecoveryModule contract to address the gas

inefficiencies.

53 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L237-L239
https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L294-L304
https://ackeeblockchain.com

Fix 1.1

The gas inefficiency in the recover fucntion was resolved in conjunction with

M3. The isAuthorizedToRecover function was updated to use the

validatorCount variable instead of computing the validator count through the

getAllowedValidators function.

Go back to Findings Summary

54 of 82

https://ackeeblockchain.com

W5: Events missing parameters

Impact: Warning Likelihood: N/A

Target: UniversalEmailRecoveryModul

e.sol,

EmailRecoveryModule.sol,

EmailRecoveryFactory.sol,

EmailRecoveryUniversalFactor

y.sol

Type: Code quality

Description

The following events in the UniversalEmailRecoveryModule and

EmailRecoveryModule contracts are missing critical parameters:

1. The RecoveryExecuted event is missing the recovered account address.

2. The NewValidatorRecovery and RemovedValidatorRecovery events are missing

the account address.

Listing 23. Excerpt from UniversalEmailRecoveryModule

39 event NewValidatorRecovery(address indexed validatorModule, bytes4
 recoverySelector);
40 event RemovedValidatorRecovery(address indexed validatorModule, bytes4
 recoverySelector);
41 event RecoveryExecuted();

These missing parameters reduce clarity and complicate off-chain tracking.

Additionally, both factories emit the same event, even though the deployed

modules are different, which makes it impossible to distinguish between the

two events.

55 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L39-L41
https://ackeeblockchain.com

Listing 24. Excerpt from EmailRecoveryFactory

26 event EmailRecoveryModuleDeployed(
27 address emailRecoveryModule, address emailRecoveryManager, address
 subjectHandler
28);

Recommendation

Critical parameters should be included in the RecoveryExecuted,

NewValidatorRecovery, and RemovedValidatorRecovery events. To improve code

maintainability, consider moving these events to the IEmailRecoveryModule

interface.

Create two separate events for EmailRecoveryFactory and

EmailRecoveryUniversalFactory:

• In EmailRecoveryFactory, add additional validator and functionSelector

parameters to the EmailRecoveryModuleDeployed event.

• Rename the event in EmailRecoveryUniversalFactory to

EmailUniversalRecoveryModuleDeployed.

Fix 1.1

The issue was fixed by adding the missing parameters to all the specified

events. Necessary changes were made to the EmailRecoveryFactory and

EmailRecoveryUniversalFactory events to distinguish between the two

factories.

Go back to Findings Summary

56 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/factories/EmailRecoveryFactory.sol#L26-L28
https://ackeeblockchain.com

W6: Missing AddedGuardian event emission in
setupGuardians function

Impact: Warning Likelihood: N/A

Target: GuardianUtils.sol Type: Bad

implementation

Description

The setupGuardians function from the GuardianUtils library function is used to

set up all guardians during module initialization. However, it does not emit the

AddedGuardian event when adding guardians.

Listing 25. Excerpt from GuardianUtils

55 function setupGuardians(
56 mapping(address => IEmailRecoveryManager.GuardianConfig) storage
 guardianConfigs,
57 mapping(address => EnumerableGuardianMap.AddressToGuardianMap) storage
 guardiansStorage,
58 address account,
59 address[] memory guardians,
60 uint256[] memory weights,
61 uint256 threshold
62)
63 internal
64 {
65 uint256 guardianCount = guardians.length;
66 if (guardianCount != weights.length) {
67 revert IncorrectNumberOfWeights();
68 }
69 if (threshold == 0) {
70 revert ThresholdCannotBeZero();
71 }
72 uint256 totalWeight = 0;
73 for (uint256 i = 0; i < guardianCount; i++) {
74 address guardian = guardians[i];
75 uint256 weight = weights[i];
76 if (guardian == address(0) || guardian == account) {
77 revert InvalidGuardianAddress();

57 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/libraries/GuardianUtils.sol#L55-L101
https://ackeeblockchain.com

78 }
79 // As long as weights are 1 or above, there will be enough total
 weight to reach the
80 // required threshold. This is because we check the guardian count
 cannot be less
81 // than the threshold and there is an equal amount of guardians to
 weights.
82 if (weight == 0) {
83 revert InvalidGuardianWeight();
84 }
85 GuardianStorage memory guardianStorage =
 guardiansStorage[account].get(guardian);
86 if (guardianStorage.status != GuardianStatus.NONE) {
87 revert AddressAlreadyGuardian();
88 }
89 guardiansStorage[account].set({
90 key: guardian,
91 value: GuardianStorage(GuardianStatus.REQUESTED, weight)
92 });
93 totalWeight += weight;
94 }

This inconsistency in event emission can lead to difficulties in tracking

guardian additions off-chain.

Additionally, this function duplicates code from the addGuardian function,

which emits the AddedGuardian event correctly.

Recommendation

Ensure that the AddedGuardian event is emitted when adding guardians in the

setupGuardians function.

Fix 1.1

The issue was fixed by using the addGuardian function (which already emits

the AddedGuardian event) to add guardians in the setupGuardians function.

Go back to Findings Summary

58 of 82

https://ackeeblockchain.com

W7: ERC-4337 violation in onInstall

Impact: Warning Likelihood: N/A

Target: UniversalRecoveryModule.sol,

EnumerableGuardianMap.sol

Type: EIP violation

Description

ERC-4337 along with ERC-7562 define a set of rules that must be followed

during the account abstraction user operation validation phase. The rules

especially must be followed in the case of ERC-7579 validator modules.

The codebase contains two ERC-7579 executor modules, EmailRecoveryModule

and UniversalEmailRecoveryModule. Although it is not strictly required by the

ERC for these modules to follow the rules, the reference implementation of

ERC-7579 smart accounts allows installation of these modules during the

validation phase (initial smart account setup).

The module UniversalEmailRecoveryModule stores the list of allowed validators

in the validators mapping that is accessed in the onInstall function.

Listing 26. Excerpt from UniversalEmailRecoveryModule

52 mapping(address account => SentinelListLib.SentinelList validatorList)
 internal validators;

Due to the implementation of SentinelListLib.SentinelList, the mapping is

not ERC-4337 compliant.

Additionally, both modules call the IEmailRecoveryManager.configureRecovery

function and, consequently, the GuardianUtils.setupGuardians function in the

onInstall function.

The GuardianUtils.setupGuardians function is not ERC-4337 compliant

59 of 82

https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-7562
https://eips.ethereum.org/EIPS/eip-7579
https://eips.ethereum.org/EIPS/eip-7579
https://eips.ethereum.org/EIPS/eip-7579
https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/modules/UniversalEmailRecoveryModule.sol#L52-L52
https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-4337
https://ackeeblockchain.com

because it writes into the guardiansStorage mapping.

Listing 27. Excerpt from EmailRecoveryManager

82 mapping(address account => EnumerableGuardianMap.AddressToGuardianMap
 guardian) internal
83 guardiansStorage;

The mapping is not ERC-4337 compliant because the

EnumerableGuardianMap.AddressToGuardianMap struct contains two nested

mappings, neither of which uses the smart account address as the key.

Listing 28. Excerpt from EnumerableGuardianMap

45 struct AddressToGuardianMap {
46 // Storage of keys
47 EnumerableSet.AddressSet _keys;
48 mapping(address key => GuardianStorage) _values;
49 }

struct Set {
 // Storage of set values
 bytes32[] _values;
 // Position is the index of the value in the `values` array plus 1.
 // Position 0 is used to mean a value is not in the set.
 mapping(bytes32 value => uint256) _positions;
}

struct AddressSet {
 Set _inner;
}

Recommendation

Although it is not strictly required to have onInstall functions in ERC-7579

executor modules ERC-4337 compliant, it prevents users from installing the

aforementioned modules during the initial smart account setup. Either well-

60 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/EmailRecoveryManager.sol#L82-L83
https://eips.ethereum.org/EIPS/eip-4337
https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/libraries/EnumerableGuardianMap.sol#L45-L49
https://eips.ethereum.org/EIPS/eip-7579
https://eips.ethereum.org/EIPS/eip-4337
https://ackeeblockchain.com

document that the modules cannot be installed during the smart account

setup or make the modules ERC-4337 compliant.

Acknowledgment 1.1

Acknowledged by the client.

Resolved by adding comments explaining the violation as

decided it was too complex to make it compatible. Future

versions could look to resolve this.

— ZK Email Team

Go back to Findings Summary

61 of 82

https://eips.ethereum.org/EIPS/eip-4337
https://ackeeblockchain.com

I1: getTrustedRecoveryManager function returns
public variable emailRecoveryManager

Impact: Info Likelihood: N/A

Target: EmailRecoveryModule.sol,

UniversalEmailRecoveryModul

e.sol

Type: Code quality

Description

In both EmailRecoveryModule and UniversalEmailRecoveryModule contracts, the

getTrustedRecoveryManager function returns the emailRecoveryManager variable,

which is already publicly accessible.

Recommendation

Either remove the getTrustedRecoveryManager function, or make the

emailRecoveryManager variable private.

Fix 1.1

The issue was fixed by removing the getTrustedRecoveryManager function from

both EmailRecoveryModule and UniversalEmailRecoveryModule contracts.

Go back to Findings Summary

62 of 82

https://ackeeblockchain.com

I2: Non-immutable state variables in
EmailRecoveryManager contract

Impact: Info Likelihood: N/A

Target: EmailRecoveryManager.sol Type: Code quality

Description

In the EmailRecoveryManager contract, the state variable deployer is not

declared as immutable. It is likely intended to be set only once and remains

unchanged throughout the contract’s lifecycle.

Recommendation

Make the deployer variable immutable. Declaring variables as immutable can

save gas and clarify code intent.

Fix 1.1

The issue was fixed by declaring the deployer variable as immutable.

Go back to Findings Summary

63 of 82

https://ackeeblockchain.com

I3: Misleading naming

Impact: Info Likelihood: N/A

Target: Type: Code quality

Description

The function name isAuthorizedToRecover suggests it checks if an entity is

authorized to perform recovery actions. However, the intended functionality

is to check if an entity is authorized to be recovered. This difference can lead

to confusion about the function’s purpose and its use within the system.

Recommendation

Consider renaming the isAuthorizedToRecover function to reflect its intended

functionality better. Possibly use isAuthorizedToBeRecovered, which indicates

that the function checks whether an entity is authorized to be the subject of

a recovery process.

Fix 1.1

The issue was fixed by renaming the isAuthorizedToRecover function to

isAuthorizedToBeRecovered.

Go back to Findings Summary

64 of 82

https://ackeeblockchain.com

I4: Unchecked return values in
EnumerableGuardianMap library

Impact: Info Likelihood: N/A

Target: GuardianUtils.sol Type: Code quality

Description

The EnumerableGuardianMap library is used by the GuardianUtils contract to

manage guardians, which are stored in a guardiansStorage mapping. The set

and remove functions from the EnumerableGuardianMap library return a boolean,

which indicates whether the added/removed data was present in the

mapping before the operation. These return values can be used to simplify

the logic in the following GuardianUtils functions:

• addGuardian

• removeGuardian

• setupGuardians

In the mentioned functions, the guardianStorage.status !=

GuardianStatus.NONE requirement can be removed in favor of reverting based

on the return values from the set and remove functions, simplifying the code.

Recommendation

Consider refactoring the addGuardian, removeGuardian, and setupGuardians

functions in GuardianUtils to check the return values of set and remove

operations on guardiansStorage in favor of checking guardianStorage.status

!= GuardianStatus.NONE.

Fix 1.1

The issue was fixed by checking the return values of set and remove

65 of 82

https://ackeeblockchain.com

operations on guardiansStorage in the addGuardian, removeGuardian, and

setupGuardians functions.

Go back to Findings Summary

66 of 82

https://ackeeblockchain.com

I5: Use calldata in favor of memory in function
parameters

Impact: Info Likelihood: N/A

Target: - Type: Gas optimization

Description

When a function with a memory parameter is called externally, the function

parameters are initially in calldata. To work with these parameters, Solidity

has to:

• decode the ABI-encoded data in calldata;

• copy it into memory.

This process consumes more gas than if the function parameters were

declared as calldata instead of memory.

Recommendation

Consider using calldata instead of memory, where arguments passed to the

functions are only used and are not changing during the function call to save

gas usage. The following contracts can be updated:

• EmailRecoveryFactory

• EmailRecoveryManager

• EmailRecoverySubjectHandler

• EnumerableGuardianMap

• GuardianUtils

• UniversalEmailRecoveryModule

67 of 82

https://ackeeblockchain.com

Fix 1.1

The issue was fixed by updating the function parameters to use calldata

instead of memory where suitable.

Go back to Findings Summary

68 of 82

https://ackeeblockchain.com

I6: Floating pragma

Impact: Info Likelihood: N/A

Target: - Type: Code quality

Description

The project uses solidity floating pragma. A mistake in deployment can cause

a version mismatch and, thus, an unexpected bug.

Recommendation

Consider fixing the pragma to a fixed version.

Acknowledgment 1.1

The issue was acknowledged.

Chose not to implement for better compatibility with external

contracts.

— ZK Email Team

Go back to Findings Summary

69 of 82

https://ackeeblockchain.com

I7: Missing zero-address validation in
constructors

Impact: Info Likelihood: N/A

Target: - Type: Code quality

Description

The following contracts are missing data validation for address parameters

that passed in their constructors:

• UniversalEmailRecoveryModule

• EmailRecoveryModule

• EmailRecoveryFactory

• EmailRecoveryUniversalFactory

• EmailRecoveryManager

By accident, an incorrect value (zero-address) can be passed to the

constructor.

Recommendation

Consider adding zero-address checks for the address parameters.

Fix 1.1

The issue was fixed by adding zero-address checks for the address

parameters in constructors.

Go back to Findings Summary

70 of 82

https://ackeeblockchain.com

I8: Modifiers not above constructors

Impact: Info Likelihood: N/A

Target: - Type: Code quality

Description

The modifiers in the following contracts are placed below constructors:

• EmailRecoveryManager

• UniversalEmailRecoveryModule

Placing modifiers above the constructor is a common best practice in

Solidity, which makes the code more readable.

Recommendation

Move the modifiers above the constructors.

Fix 1.1

The issue was fixed by moving said modifiers above the constructors.

Go back to Findings Summary

71 of 82

https://ackeeblockchain.com

I9: Safe validateRecoverySubject optimization

Impact: Info Likelihood: N/A

Target: SafeRecoverySubjectHandler.

sol

Type: Gas optimization

Description

The function validateRecoverySubject in the SafeRecoverySubjectHandler

contract validates recovery email subject parameters. As a part of the

validation, the following operations are performed:

• It is checked that the old Safe owner to be replaced truly is the current

Safe owner.

• All current Safe owners are requested to find an entry present before the

Safe owner to be replaced inside a linked list.

Listing 29. Excerpt from

SafeRecoverySubjectHandler.validateRecoverySubject

145 bool isOwner = ISafe(accountInEmail).isOwner(oldOwnerInEmail);
146 if (!isOwner) {
147 revert InvalidOldOwner();
148 }
149 if (newOwnerInEmail == address(0)) {
150 revert InvalidNewOwner();
151 }

Listing 30. Excerpt from

SafeRecoverySubjectHandler.validateRecoverySubject

164 address previousOwnerInLinkedList =
165 getPreviousOwnerInLinkedList(accountInEmail, oldOwnerInEmail);

72 of 82

https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/handlers/SafeRecoverySubjectHandler.sol#L145-L152
https://github.com/zkemail/email-recovery/blob/4e7031693d8e97cfcbc42b7d063a748a0a53b952/src/handlers/SafeRecoverySubjectHandler.sol#L164-L165
https://ackeeblockchain.com

Recommendation

Both operations can be combined into a single one, requesting all current

Safe owners and both checking the presence of the old Safe owner and

finding the entry before it. Additionally, it can also be checked that the new

Safe owner to be added is not already present in the list of current Safe

owners.

Fix 1.1

The SafeRecoverySubjectHandler.validateRecoverySubject function was

refactored as part of the fix for W3. getPreviousOwnerInLinkedList call was

moved into the parseRecoveryCalldata function. The newOwner is now checked

against existing owners.

Didn’t need to combine with getPreviousOwnerInLinkedList as

that was moved into the parseRecoveryCalldata function. Did

check the newOwner against existing owners.

— ZK Email Team

Go back to Findings Summary

73 of 82

https://ackeeblockchain.com

I10: Unused using-for directive

Impact: Info Likelihood: N/A

Target: SafeRecoverySubjectHandler.

sol

Type: Code quality

Description

The codebase contains an occurrence of an unused using-for directive. See

Appendix C for more information about the using-for directive. This issue was

detected using static analysis in Wake.

Recommendation

Remove the unused using-for directive.

Fix 1.1

The unused using-for directive was removed.

Go back to Findings Summary

74 of 82

https://getwake.io
https://ackeeblockchain.com

Report revision 1.1
The main change since the previous revision 1.0 is the disallowed initialization

of the system without guardians and a zero threshold. Additionally, the

system accurately tracks the sum of weights from accepted guardians,

disallowing entering the recovery process if the recovery threshold cannot

be met. The gas usage of the contracts has been optimized, and all other

reported issues have been addressed.

75 of 82

https://ackeeblockchain.com

M5: UniversalRecoveryModule arbitrary Safe
recovery call

Medium severity issue

Impact: High Likelihood: Low

Target: UniversalEmailRecoveryModul

e.sol

Type: Logical error

Description

UniversalEmailRecoveryModule can be set up to make recovery calls to

arbitrary Safe/Safe7579 functions. This is possible due to Safe7579 reporting

itself as a validator module, allowing the user to add a recovery method to

the UniversalEmailRecoveryModule, setting the Safe account itself as a

validator paired with any arbitrary function selector. This function selector

could be set to any arbitrary Safe/Safe7579 function to be called during

recovery. Several of these functions are only intended to be called from

within Safe, and calling them from a recovery module could present a

potential vulnerability.

The following functions pose a high risk if not properly restricted:

1. execute from Safe7579

2. setFallbackHandler from Safe

3. setGuard from Safe

Exploit scenario

The user sets up the UniversalEmailRecoveryModule with the Safe account as a

validator and an arbitrary function selector. Upon recovery, guardians are

then able to call the arbitrary function on the Safe account. The subsequent

76 of 82

https://ackeeblockchain.com

exploit depends on the specific function selector set up during the recovery

process. setFallbackHandler and setGuard functions would allow the attacker

to install a malicious handler or guard on the Safe Smart Account, while the

execute function allows execution any arbitrary function call.

Recommendation

Restrict the specified function selectors from being used during recovery.

Fix 1.2

Fixed by restricting the specified function selectors from being used during

recovery.

Go back to Findings Summary

77 of 82

https://ackeeblockchain.com

Report revision 1.2
A single change is present since the last revision 1.1, adding additional

function selector restrictions to the recovery process to mitigate issue M5.

78 of 82

https://ackeeblockchain.com

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain, ZK Email: Email Recovery, 5.8.2024.

79 of 82

https://github.com/ackee-blockchain
https://ackeeblockchain.com

Appendix B: Glossary of terms
The following terms might be used throughout the document:

Superclass/Ancestor of C

A contract that C inherits/derives from.

Subclass/Child of C

A contract that inherits/derives from C.

Syntactic contract

A Solidity contract. May have an inheritance chain, and may be deployed.

Deployed contract

An EVM account with non-zero code. If its source was written in Solidity, it

was created through at least one syntactic contract. If that contract had

superclasses (parents), it would be composed of multiple syntactic

contracts.

Init/initialization function

A non-constructor function that serves as an initializer. Often used in

upgradeable contracts.

External entrypoint

A public or external function.

Public/Publicly-accessible function/entrypoint

An external or public function that can be successfully executed by any

network account.

Mutating function

A non-view and non-pure function.

80 of 82

https://ackeeblockchain.com

Appendix C: Wake outputs
This section lists the outputs from the Wake tool used during the audit.

C.1. Detectors
wake detect unused-using-for

╭─ [WARNING][LOW] Unused contract in using-for directive [unused-using-for] ───╮
│ 11 * This is a custom subject handler that will work with Safes and defin │
│ 12 */ │
│ 13 contract SafeRecoverySubjectHandler is IEmailRecoverySubjectHandler { │
│ ❱ 14 using Strings for uint256; │
│ 15 │
│ 16 error InvalidSubjectParams(); │
│ 17 │
╰─ src/handlers/SafeRecoverySubjectHandler.sol ────────────────────────────────╯

Figure 1. Unused using-for directive

81 of 82

https://getwake.io
https://ackeeblockchain.com

 Thank You
 Ackee Blockchain a.s.

 Prague, Czech Republic

 hello@ackeeblockchain.com

 h�ps://twi�er.com/AckeeBlockchain

	ZK Email: Email Recovery
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain
	2.2. Audit Methodology
	2.3. Finding classification
	2.4. Review team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1
	Revision 1.2

	4. Summary of Findings
	Report revision 1.0
	System Overview
	Trust Model
	H1: Multiple vulnerabilities in recovery configuration process
	H2: Premature guardian configuration update in addGuardian function
	M1: templateIdx function parameter check is in incorrect place
	M2: Maximum guardians DoS
	M3: Selector collisions in UniversalEmailRecoveryModule
	M4: MAX + 1 validators may be configured in UniversalEmailRecoveryModule
	L1: Validators can be added/removed before module initialization in UniversalEmailRecovery
	L2: UniversalEmailRecovery validators cannot be disallowed after being uninstalled
	L3: cancelRecovery function does not revert when no recovery is in process
	W1: isInitialized function returns false if initialized without guardians
	W2: Unused bytes32 function parameter in EmailRecoveryManager
	W3: Unnecessary computation of calldataHash value in validateRecoverySubject function
	W4: Gas inefficiencies in UniversalRecoveryModule
	W5: Events missing parameters
	W6: Missing AddedGuardian event emission in setupGuardians function
	W7: ERC-4337 violation in onInstall
	I1: getTrustedRecoveryManager function returns public variable emailRecoveryManager
	I2: Non-immutable state variables in EmailRecoveryManager contract
	I3: Misleading naming
	I4: Unchecked return values in EnumerableGuardianMap library
	I5: Use calldata in favor of memory in function parameters
	I6: Floating pragma
	I7: Missing zero-address validation in constructors
	I8: Modifiers not above constructors
	I9: Safe validateRecoverySubject optimization
	I10: Unused using-for directive

	Report revision 1.1
	M5: UniversalRecoveryModule arbitrary Safe recovery call

	Report revision 1.2
	Appendix A: How to cite
	Appendix B: Glossary of terms
	Appendix C: Wake outputs
	C.1. Detectors

