
Prepared for
Aayush Gupta
ZK Email

Prepared by
Jade Han
Allen Roh
Zellic

August 30, 2024

ZK Email
Comprehensive Security Assessment

ZK Email Comprehensive Security Assessment August 30, 2024

Contents About Zellic 5

1. Overview 5

1.1. Executive Summary 6

1.2. Goals of the Assessment 6

1.3. Non-goals and Limitations 6

1.4. Results 6

2. Introduction 7

2.1. About ZK Email 8

2.2. Methodology 8

2.3. Scope 10

2.4. Project Overview 11

2.5. Project Timeline 12

3. Detailed Findings 12

3.1. Allowing bypass of proof verification via unrestricted skipedSubjectPrefix 13

3.2. Regular expression flaw related to email in circuit 15

3.3. Incorrect public input range check 16

3.4. The zk-regex audit fixes are not incorporated 18

3.5. Indexes in circuits are not checked to be valid 20

3.6. Incorrect constraints in HashSign 22

3.7. The lasttimestamp updatemechanism flaw in EmailAuth 24

3.8. Unnecessary complexity in resetWhenDisabled function implementation 26

Zellic © 2024 ← Back to Contents Page 2 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

3.9. DKIM signatures before 2001may break the timestamp logic 28

3.10. Invitation code and email addressmay overlap, leading to unexpected behavior 30

3.11. Minor inaccuracies in documentation of SelectRegexReveal 32

3.12. Circuits could be further optimized 34

4. Discussion 34

4.1. Enhancement for selector filtering in UniversalEmailRecoveryModule and
EmailRecoveryModule 35

4.2. Test suite 35

4.3. Multichain replay issue 36

5. ThreatModel 36

5.1. Module: EmailAccountRecovery.sol 37

5.2. Module: EmailAuth.sol 41

5.3. Module: EmailRecoveryFactory.sol 43

5.4. Module: EmailRecoveryManager.sol 44

5.5. Module: EmailRecoveryModule.sol 49

5.6. Module: EmailRecoveryUniversalFactory.sol 50

5.7. Module: GuardianManager.sol 52

5.8. Module: SafeEmailRecoveryModule.sol 54

5.9. Module: UniversalEmailRecoveryModule.sol 55

Zellic © 2024 ← Back to Contents Page 3 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

6. Assessment Results 59

6.1. Disclaimer 60

Zellic © 2024 ← Back to Contents Page 4 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 5 of 60

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

ZK Email Comprehensive Security Assessment August 30, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for ZK Email from August 5th to August 26th, 2024. During
this engagement, Zellic reviewed ZK Email's code for security vulnerabilities, design issues, and
general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Can an attacker trigger malicious actions using inputs unrelated to the proof?
• Is it possible for an attacker to generate amanipulated proof by exploiting logical flaws in
the circuit?

• Do themoduleswithin the project complywith the ERC-7579 and Safemodule extension
format?

• Are there any scenarios where funds could be frozen or stolen?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped ZK Email contracts, we discovered 12 findings. One critical
issuewas found. Fourwere of high impact, fivewere of low impact, and the remaining findingswere
informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for ZK Email's benefit
in the Discussion section (4. ↗).

Zellic © 2024 ← Back to Contents Page 6 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 1

■ High 4

■ Medium 0

■ Low 5

■ Informational 2

Zellic © 2024 ← Back to Contents Page 7 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

2. Introduction 2.1. About ZK Email

ZK Email contributed the following description of ZK Email:

One issue with existing applications on Ethereum is that all users who execute transactions
on-chain must install Ethereum-specific tools such as wallets and manage their own private
keys. The ZK Emailteam's ether email-auth SDK solves this issue: it allows users to execute
any transactionon-chain simply by sendinganemail. As its concrete application, theZKEmail-
teamalsoprovidesemail-basedaccount recovery foraccountabstractionwallets suchasSafe
wallets. In social recovery, the account ownermust appoint trusted persons as guardianswho
are authorized to update the private key for controlling the account. However, not all such per-
sons are necessarily Ethereum users. The ZK Emailteam's solution mitigates this constraint
by allowing guardians to complete the recovery process simply by sending an email. In other
words, any trusted persons canwork as guardians as long as they can send emails.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look

Zellic © 2024 ← Back to Contents Page 8 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 9 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

2.3. Scope

The engagement involved a review of the following targets:

ZK Email Contracts

Type Solidity

Platform EVM-compatible

Target ether-email-auth

Repository https://github.com/zkemail/ether-email-auth ↗

Version b5694a9e0e49d07a862232f665dc4d0886c5a15f

Programs packages/contracts/*

Target email-recovery

Repository https://github.com/zkemail/email-recovery ↗

Version 85d3ff94677da3e9206d63815edcf8604a422245

Programs src/*

Zellic © 2024 ← Back to Contents Page 10 of 60

https://github.com/zkemail/ether-email-auth
https://github.com/zkemail/email-recovery

ZK Email Comprehensive Security Assessment August 30, 2024

Target zk-email-verify

Repository https://github.com/zkemail/zk-email-verify ↗

Version 13b41c2f3c4682ee16e6210999a649e8d6bfef18

Programs blob/main/packages/contracts/DKIMRegistry.sol

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of two person-weeks. The as-
sessment was conducted by two engineers over the course of 16 calendar days.

Contact Information

The following project manager was associated
with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Jade Han
Engineer
hojung@zellic.io ↗

Allen Roh
Engineer
allen@kalos.xyz ↗

Zellic © 2024 ← Back to Contents Page 11 of 60

https://github.com/zkemail/zk-email-verify
mailto:jacob@zellic.io
mailto:hojung@zellic.io
mailto:allen@kalos.xyz

ZK Email Comprehensive Security Assessment August 30, 2024

2.5. Project Timeline

The key dates of the engagement are detailed below.

August 5, 2024 Start of primary review period

August 7, 2024 Kick-off call

August 26, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 12 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

3. Detailed Findings 3.1. Allowing bypass of proof verification via unrestricted skipedSubjectPrefix

Target EmailAuth.sol

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The vulnerability lies in the authEmail function of the EmailAuth contract, where an attacker can
exploit the way certain parameters are processed. When a victim executes their transaction, cer-
tain parameters such as expectedSubject, proof.maskedSubject, trimmedMaskedSubject, and
proof.skipedSubjectPrefix are set.

For example, the expectedSubjectmight be "ABCD", while proof.maskedSubject could be "ABC
D", and thecorrespondingtrimmedMaskedSubject remains "ABCD" (proof.skipedSubjectPrefix
is zero in this case). Also, theVerifier contract’sverifyEmailProof functionprocesses these values,
packing the stringFieldswith "A B C D" and additional zero padding, resulting in a total length of
605 bytes.

The attacker, aiming to alter the expectedSubject to something like "E F G H", can craft their input
such that length of proof.maskedSubject extends beyond the 605 length, appending "E F G H" af-
ter the zero padding. By setting proof.skipedSubjectPrefix to 605, the system trims the string-
Fields to "A B CD" + "\x00"*(605-len("A B CD")) in the attacker’s context.

In summary, this means that a proof generated for a subject of "A B C D" can be used to execute a
transaction where the subject is "E F GH".

Impact

An identified vulnerability in the EmailAuth contract allows attackers to perform a front-running at-
tackbyexploitingavictim's transaction. Bycopyingandmanipulatingspecificfieldswithin the trans-
action, the attacker can change the ownership of a contract or asset to themselves. This poses a se-
vere risk, potentially leading to unauthorized transfers of valuable assets or control over contracts.

Recommendations

To prevent the described attack, the contract should enforce the following constraint.

• Constrain maskedSubject length: Ensure that the proof.maskedSubject is less than or
equal to 605 bytes. This will prevent any excess data from being included in the proof.

Zellic © 2024 ← Back to Contents Page 13 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Remediation

This issue was fixed by the ZK Email Team in commit 1455cd22 ↗.

Zellic © 2024 ← Back to Contents Page 14 of 60

https://github.com/zkemail/ether-email-auth/commit/1455cd221dcb0849190879911688152669e4ed36

ZK Email Comprehensive Security Assessment August 30, 2024

3.2. Regular expression flaw related to email in circuit

Target email_auth_template.circom

Category CodingMistakes Severity High

Likelihood High Impact High

Description

In email_auth_template.circom, when checking the email_domain_regex.circom that it references,
the regular expression used to extract the email is as follows:

[A-Za-z0-9!#$%&'*+=?\^_`{|}~.]+@[A-Za-z0-9.-]+

The above regular expression can extract most email addresses. However, according to
this section onWikipedia ↗, there are examples of valid email addresses that this regular expression
cannot handle.

• "victim@gmail.com"@spam.co.kr
• /victim@gmail.com/@spam.co.kr

Impact

By spoofing the email sender, an attacker can generate a false proof, which could be exploited to
take ownership of the user's wallet or steal their assets.

Recommendations

To resolve this issue, the circuit code should bemodified to use the following regular expression:

[A-Za-z0-9!#$%&'"/*+=?\^_`{|}~.]+@[A-Za-z0-9.-]+

Remediation

This issue was fixed by the ZK Email Team in commit f71b30bd ↗.

Zellic © 2024 ← Back to Contents Page 15 of 60

https://en.wikipedia.org/wiki/Email_address#Valid_email_addresses
https://github.com/zkemail/zk-regex/pull/68/commits/f71b30bde3fc2a2ba79fe151711552882ea4e707

ZK Email Comprehensive Security Assessment August 30, 2024

3.3. Incorrect public input range check

Target Groth16Verifier.sol

Category CodingMistakes Severity High

Likelihood High Impact High

Description

In a ZKP verifier, it is customary to add a range check on each public input — checking that they are
less than p, the prime field of the arithmetization. This is due to the fact that x and x + p may be
different as integers (or in uint256), but they are equal in Fp. To prevent using x + p in the place of
x in critical values like timestamp or nullifiers, a range check is used. Indeed, timestamp and email
nullifiers are public inputs in the circuit, and they have relevant logic on the contract side as well.

function authEmail(EmailAuthMsg memory emailAuthMsg) public onlyController {
require(

timestampCheckEnabled == false ||
emailAuthMsg.proof.timestamp == 0 ||
emailAuthMsg.proof.timestamp > lastTimestamp,

"invalid timestamp"
);

//

usedNullifiers[emailAuthMsg.proof.emailNullifier] = true;
lastTimestamp = emailAuthMsg.proof.timestamp;

}

In the Groth16Verifier, an automatically generated verifier contract, the check is performed but im-
plemented incorrectly.

// Scalar field size
uint256 constant r = 21888242871839275 ... 575808495617;
// Base field size
uint256 constant q = 21888242871839275 ... 645226208583;

// ...
function checkField(v) {

if iszero(lt(v, q)) {
mstore(0, 0)
return(0, 0x20)

Zellic © 2024 ← Back to Contents Page 16 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

}
}

Here, the field check is done against q, which is the base field of BN254. The correct check is against
r, the scalar field of BN254. As q is larger than r, this allows an attacker to carry out an attack — for
example, a nullifier can be used twice.

We note that thismay be a result of using an older version of snarkjs, as suggested by this commit ↗
inside snarkjs.

Impact

Incorrect usage of the timestamp and nullifier can be carried out in the contract, such as double
usage of a nullifier.

Recommendations

Update snarkjs to the recent versions to fix the incorrect prime field range check.

Remediation

This issue was fixed by the ZK Email Team in commit e84065db ↗, by updating the snarkjs ver-
sion.

Zellic © 2024 ← Back to Contents Page 17 of 60

https://github.com/iden3/snarkjs/commit/8035774be493ac09e322cd1335e1a1d0ea3979d9
https://github.com/zkemail/ether-email-auth/commit/e84065db4fa087b8d6152bb9682de71f6676e3ff#diff-52ab452cba0deed0cdb9b9c36680257ba68a078476ab0c8025c9f5a1e4da0d62R17

ZK Email Comprehensive Security Assessment August 30, 2024

3.4. The zk-regex audit fixes are not incorporated

Target invitation_code_regex.circom

Category CodingMistakes Severity High

Likelihood High Impact High

Description

The regex circuits in ether-email-auth are derived from the ZK Regex library, which automatically
generates a corresponding circom circuit. The regex library was previously audited by a different
audit firm, and this audit assumes that the ZK Regex library is correct.

However, we note that the version of ZK Regex library used to generate the circom circuits in ether-
email-auth is not up to date, especially with the previous audit fixes.

For example, in ether-email-auth, the is_consecutive signal is initialized to 1.

signal is_consecutive[msg_bytes+1][3];
is_consecutive[msg_bytes][2] <== 1;

However, this is incorrect, and this was fixed in the ZK Regex audit, as shown in this commit ↗.

signal is_consecutive[msg_bytes+1][3];
is_consecutive[msg_bytes][2] <== 0;

Indeed, this does change the revealed regex results in the invitation codewith prefix regex.

In general, we advise the team to use the final updated version of ZK Regex to generate the relevant
circom circuits for ether-email-auth.

Impact

The revealed regex result may be incorrect, resulting in incorrect masking of the subject.

Recommendations

Update the ZK Regex library used to generate the relevant circom circuits.

Zellic © 2024 ← Back to Contents Page 18 of 60

https://github.com/zkemail/zk-regex/commit/0a5943abdcea19a84e55bd592b3df51aa30eaafa

ZK Email Comprehensive Security Assessment August 30, 2024

Remediation

This issue was fixed by the ZK Email Team in commit 9deaf804 ↗.

Zellic © 2024 ← Back to Contents Page 19 of 60

https://github.com/zkemail/ether-email-auth/commit/9deaf80435502c4d9c1a77465a0e8195f749e63d#diff-70ef27fe169f163fb2f66dca92262488e58cbbd307560a240813cdde5a4f47caL160-L185

ZK Email Comprehensive Security Assessment August 30, 2024

3.5. Indexes in circuits are not checked to be valid

Target email_auth_template.circom

Category CodingMistakes Severity High

Likelihood High Impact High

Description

Most regex functionalities are out of scope, but they basically work as follows. First, regex circuits
takeastringas their input and return thestringwithonly thepublic partsof the regexmatch revealed
and the remaining parts masked with null bytes. Then, the SelectRegexReveal function is used to
only take thematched parts. We can see this pattern used inside the circuit as follows.

// FROM HEADER REGEX
signal from_regex_out, from_regex_reveal[max_header_bytes];
(from_regex_out, from_regex_reveal)

<== FromAddrRegex(max_header_bytes)(padded_header);
from_regex_out === 1;
signal from_email_addr[email_max_bytes];
from_email_addr <== SelectRegexReveal(max_header_bytes,

email_max_bytes)(from_regex_reveal, from_addr_idx);

First, the from header regex is matched to the padded header with the FromAddrRegex. The
from_regex_reveal is the result. Then, SelectRegexReveal is run on from_regex_reveal to take
thematched part, which is from_email_addr.

The SelectRegexReveal function takes the masked string and the starting index. It also takes the
reveal length as a fixed parameter. It then works as follows.

• It constrains that the byte just before the starting index is a null byte.
• It constrains that the starting index byte is nonzero.
• It constrains that indexes at least startIndex + maxRevealLen are all null bytes.
• It then rotates thearray to the left bystartIndex, then takes thefirstmaxRevealLenbytes.

However, all of the main checks can be bypassed by having a large startIndex — larger than the
array length.

Indeed, the documentation of SelectRegexRevealmentions that it assumes a valid indexwas taken
as input. However, there are no such corresponding checks inside email_auth_template.circom.
Due to this, one can output incorrect results of SelectRegexReveal.

Zellic © 2024 ← Back to Contents Page 20 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Impact

The results of SelectRegexReveal are underconstrained.

Recommendations

Add the constraint that each index is a valid index.

Remediation

This issue was fixed by the ZK Email Team in commit e4497357 ↗ and 0b21c2a4 ↗ by adding a range
check. We note that the fix here is sufficient due to the additional range check on index inside
VarShiftLeft in zk-email-verify.

Zellic © 2024 ← Back to Contents Page 21 of 60

https://github.com/zkemail/ether-email-auth/commit/e449735740247b65cf13920e5b5d787893b72c5e
https://github.com/zkemail/ether-email-auth/commit/0b21c2a4ea30395d92288511553c183ee0f9176c

ZK Email Comprehensive Security Assessment August 30, 2024

3.6. Incorrect constraints in HashSign

Target hash_sign.circom

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

Topreventasamesetofsignatures frombeingused twice, theemailnullifier iscomputedasadouble
Poseidon hash of the signature. This email nullifier is one of the public values of the ZKP circuit, and
in the contracts, it is verified that a nullifier will not be used twice.

To compute the Poseidon hash of the signature, two signature chunks are combined into a single
field element, then the field elements are hashed via Poseidon. The circuit is as follows.

template HashSign(n,k) {
signal input signature[k];

signal output sign_hash;

var k2_chunked_size = k >> 1;
if(k % 2 == 1) {

k2_chunked_size += 1;
}
signal output sign_ints[k2_chunked_size];

for(var i = 0; i < k2_chunked_size; i++) {
if(i==k2_chunked_size-1 && k2_chunked_size % 2 == 1) {

sign_ints[i] <== signature[2*i];
} else {

sign_ints[i] <== signature[2*i] + (1<<n) * signature[2*i+1];
}

}
sign_hash <== Poseidon(k2_chunked_size)(sign_ints);

}

Here, if k, the number of chunks, is odd, then one chunk will be left after we pair two chunks into a
field element. This case is handled in

if(i==k2_chunked_size-1 && k2_chunked_size % 2 == 1) {
sign_ints[i] <== signature[2*i];

Zellic © 2024 ← Back to Contents Page 22 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

}

However, the condition is incorrect, for values such as k = 15 and k2_chunked_size = 8.

Thankfully, in the circuit k = 17, so k2_chunked_size = 9, which is also odd. This means that the
circuit itself is currently safe. However, on different parameters, the circuit will not work correctly.

Impact

This issue can lead to a broken circuit on different parameters of n and k.

Recommendations

Fix the condition as follows.

if(i==k2_chunked_size-1 && k % 2 == 1) {
sign_ints[i] <== signature[2*i];

}

Remediation

This issue was fixed by the ZK Email Team in commit 9deaf804 ↗.

Zellic © 2024 ← Back to Contents Page 23 of 60

https://github.com/zkemail/ether-email-auth/commit/9deaf80435502c4d9c1a77465a0e8195f749e63d#diff-eaad7699006af605425617271579f69832978ff24c5e368394c59ee03ee5d5dfL17-R17

ZK Email Comprehensive Security Assessment August 30, 2024

3.7. The lasttimestamp updatemechanism flaw in EmailAuth

Target EmailAuth.sol

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

Based on the below code, if emailAuthMsg.proof.timestamp is zero, the lastTimestamp is
overwritten with zero. This could potentially disrupt the logic that relies on the emailAu-
thMsg.proof.timestamp value, as the condition checking the timestamp may be affected by this
overwrite.

function authEmail(EmailAuthMsg memory emailAuthMsg) public onlyController {
//...
require(

timestampCheckEnabled == false ||
emailAuthMsg.proof.timestamp == 0 ||
emailAuthMsg.proof.timestamp > lastTimestamp,

"invalid timestamp"
);

//...

usedNullifiers[emailAuthMsg.proof.emailNullifier] = true;
lastTimestamp = emailAuthMsg.proof.timestamp;
emit EmailAuthed(

emailAuthMsg.proof.emailNullifier,
emailAuthMsg.proof.accountSalt,
emailAuthMsg.proof.isCodeExist,
emailAuthMsg.templateId

);
}

Impact

The code intended to prevent the use of outdated proofs using lastTimestamp may not function
correctly.

Zellic © 2024 ← Back to Contents Page 24 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Recommendations

To resolve this issue, lastTimestamp should only be updated when emailAu-
thMsg.proof.timestamp is not zero.

Remediation

This issue was fixed by the ZK Email Team in commit 4e2f119a ↗.

Zellic © 2024 ← Back to Contents Page 25 of 60

https://github.com/zkemail/ether-email-auth/commit/4e2f119a428b694c1115e59dc52cfbe278c0e494

ZK Email Comprehensive Security Assessment August 30, 2024

3.8. Unnecessary complexity in resetWhenDisabled function implementation

Target SafeEmailRecoveryModule.sol

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The resetWhenDisabled function in the smart contract currently uses the accountparameter as fol-
lows:

function resetWhenDisabled(address account) external {
if (account == address(0)) {

revert InvalidAccount(account);
}
if (ISafe(account).isModuleEnabled(address(this)) == true) {

revert ResetFailed(account);
}
deInitRecoveryModule();

}

The ZK Email team's intention was to allow any arbitrary relayer to call this function for a given
account address in order to delete all configuration data associated with that account address.
However, upon reviewing the code of the deInitRecoveryModule function, it becomes clear that
it deletes the configuration data related to msg.sender rather than the specified account address.
This behavior differs fromwhat the ZK Email team intended.

function deInitRecoveryModule() internal onlyWhenNotRecovering {
delete recoveryConfigs[msg.sender];
delete recoveryRequests[msg.sender];

removeAllGuardians(msg.sender);
delete guardianConfigs[msg.sender];

emit RecoveryDeInitialized(msg.sender);
}

Zellic © 2024 ← Back to Contents Page 26 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Impact

The current implementation may introduce unnecessary complexity, but it does not pose a signifi-
cant security risk.

Recommendations

It is recommended to create a new deinitRecoveryModule logic.

Remediation

This issue was fixed by the ZK Email Team in commit 003123cb ↗.

Zellic © 2024 ← Back to Contents Page 27 of 60

https://github.com/zkemail/email-recovery/commit/003123cb35fb26e993a5015c2d4069e8a40d4abd

ZK Email Comprehensive Security Assessment August 30, 2024

3.9. DKIM signatures before 2001may break the timestamp logic

Target email_auth_template.circom

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

In the circuits, the timestamp is derived by matching the TimestampRegex on the padded header,
then converting the decimal digits to an integer. If the timestampdoes not exist, then the timestamp
is set to zero in the circuit. In the contracts, if timestampCheckEnabled is true, then it is guaranteed
that the timestamp of each email proof is increasing, as shown below.

require(
timestampCheckEnabled == false ||

emailAuthMsg.proof.timestamp == 0 ||
emailAuthMsg.proof.timestamp > lastTimestamp,

"invalid timestamp"
);

To convert the digits to integers, the circuits take the 10 bytes from TimestampRegexmatch and Se-
lectRegexReveal, then run thecircuitDigit2Inton it. ThecircuitDigit2Intassumes that all inputs
are within ord('0') and ord('9'), and it simply accumulates the digits to an integer.

/// @input in The input byte array; assumes elements are between 48 and 57
(ASCII numbers)

/// @output out The output integer; assumes to fit in the field
template DigitBytesToInt(n) {

signal input in[n];

signal output out;

signal sums[n+1];
sums[0] <== 0;

for(var i = 0; i < n; i++) {
sums[i + 1] <== 10 * sums[i] + (in[i] - 48);

}

out <== sums[n];
}

Zellic © 2024 ← Back to Contents Page 28 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

However, this assumption does not become true if the matched timestamp is of length 9. In that
case, the timestamp_str, the 10-byte result of SelectRegexReveal, would become [9 byte times-
tamp]\x00. This will be sent over to the DigitBytesToInt, which would accumulate this without
further checks. For example, if the timestamp in the padded header was 10^9 - 1, which is nine
digits, then the actual timestamp result from the DigitBytesToIntwould be 10 * (10^9 - 1) -
48, which is a very large value, corresponding to some time in year 2286.

For this idea to work, one needs a DKIM signature with a timestamp of length 9. This means the
signature should be generated before September 2001.

Impact

One could use an old signature and trick the verifier into thinking that it is a recent signature. Also,
one could use an old signature to update the lastTimestamp in the contract into a very large value,
which means that the contract will not be able to accept new email proofs for a very long time if
timestampCheckEnabled is turned on. The exact impact is determined by the exact threat model of
the team.

Recommendations

If the teamdecides that the attack idea is of notable severity, one can fix this by simply adding a digit
check in DigitBytesToInt.

Note that this attack idea fails for the invitation code Hex2Field as it checks each byte is a correct
hex.

Remediation

This issue was fixed by the ZK Email Team in commit b7fc2f6f ↗ by adding the check that each byte
is a correct digit.

Zellic © 2024 ← Back to Contents Page 29 of 60

https://github.com/zkemail/ether-email-auth/commit/b7fc2f6fc27084bc9662403deb699c8d7aab7948

ZK Email Comprehensive Security Assessment August 30, 2024

3.10. Invitation code and email address may overlap, leading to unexpected be-
havior

Target email_auth_template.circom

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

To mask the subject bytes, one takes the full subject, matches InvitationCodeWithPrefixRegex,
and matches EmailAddrRegex. Then, it subtracts the invitation code and email address from the
subject bytes, then calls Bytes2Ints tomake them field elements.

signal masked_subject_bytes[max_subject_bytes];
for(var i = 0; i < max_subject_bytes; i++) {

masked_subject_bytes[i] <== subject_all[i] - removed_code[i] -
removed_subject_email_addr[i];

}
masked_subject <== Bytes2Ints(max_subject_bytes)(masked_subject_bytes);

Thismeans if the subject is of the form [some bytes] [invitation code] [some bytes] [email
address] [some bytes], themasked subject will be [some bytes] [null bytes] [some bytes]
[null bytes] [some bytes].

However, this idea fails if the invitation code and email address overlap. To be exact, if the email ad-
dress contains a substring thatmatches the invitation code regex, we can see unexpectedbehavior.
For example, if the email address is code1647@gmail.com, then "code1647" will also be matched in
InvitationCodeWithPrefixRegex. Therefore, the code1647 part will be subtracted twice.

Also, note that the Bytes2Ints circuit does not check that each input is a byte.

One could even try to use this idea to craft a subject that has the following properties.

• The subject itself looks normal.
• Bytes2Ints(masked subject) = Bytes2Ints(dangerous masked subject).

However, this does not work, as themasked subject is still composed of values within [-127, 127]
(+- printableASCII). Aswe are in base 256, and each Bytes2Ints only accumulates atmost 31 bytes,
it can be shown that even in Fp, no such “collisions'' occur. Note that this means that if we subtract
outmore things (not just two regexmatches) a phishing-like idea couldwork, as themasked subject
can have values of a wider range.

Zellic © 2024 ← Back to Contents Page 30 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Impact

The circuit does not work normally for email addresses with invitation code-like substrings.

Recommendations

Either concretelydocument thisbehavior, or addcircuit logic tosubtract valuesonlyonce ifmatched
both times.

Remediation

This issuewasacknowledged, andadditionaldocumentationabout thisbehaviorwasadded incom-
mit 0096e59b ↗.

Zellic © 2024 ← Back to Contents Page 31 of 60

https://github.com/zkemail/ether-email-auth/commit/0096e59b9ac24c60d38a03a8f4c42f5d1be2c301#diff-464117ae8aa30eb6e65289091b5ec0158e0ceb811dea8ca1f442602bf234a356R65

ZK Email Comprehensive Security Assessment August 30, 2024

3.11. Minor inaccuracies in documentation of SelectRegexReveal

Target regex.circom (zk-email-verify)

Category CodeMaturity Severity Informational

Likelihood N/A Impact Informational

Description

In SelectRegexReveal, there is a comment that the circuit checks that every byte that is before the
reveal part is zero. This is not true.

// Assert value before startIndex is zero
// ZK-Regex circuit contstrains that every byte before the reveal part is zero
// This is assuming matched data doesn't contain 0 (null) byte
isStartIndex[i] * (1 - isPreviousZero[i]) === 0;

In reality, only the byte right before the reveal part is checked to be zero.

To be more exact, the main assumptions surrounding SelectRegexReveal are as follows, which
should be documented.

• The regex is matched exactly once.
• Thematched regex has a length of at most maxRevealLen.

Further commenting on behaviors of SelectRegexReveal, we note that technically there may be
more than one regex match. In that case, more than one regex match may be returned as a result
of SelectRegexReveal. Also, since the output of SelectRegexReveal is simply a shift of the original
array by startIndex, we note that with inputs like [match] [null bytes] [match], with startIn-
dex being the first byte of the second match, it is possible that the return value of startIndex con-
tains parts of the first match as well. Note that even with the circuit constraint and all values after
startIndex + maxRevealLen being zero, this still works. This is because this check does not con-
sider wraparounds inside the array when shifting it.

Impact

The incorrect circuit documentationmay confuse users and developers.

Zellic © 2024 ← Back to Contents Page 32 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Recommendations

Fix the incorrect documentation, and add explanation of SelectRegexReveal's underlying assump-
tions.

Remediation

The ZK Email Team added further documentation in commit d718290d ↗.

Zellic © 2024 ← Back to Contents Page 33 of 60

https://github.com/zkemail/zk-email-verify/commit/d718290d661e0ec9519a67a1dfa6bf764a9cf322

ZK Email Comprehensive Security Assessment August 30, 2024

3.12. Circuits could be further optimized

Target email_auth_template.circom

Category Optimization Severity Informational

Likelihood N/A Impact Informational

Description

Weobserved some simple areas for optimization in the circuits.

(prefixed_code_regex_out, prefixed_code_regex_reveal)
<== InvitationCodeWithPrefixRegex(max_subject_bytes)(subject_all);

is_code_exist <== IsZero()(prefixed_code_regex_out-1);

Since prefixed_code_regex_out is already known to be boolean, is_code_exist can simply be
prefixed_code_regex_out.

This is also the case with is_subject_email_addr_exist.

signal code_consistency <== IsZero()(is_code_exist * (1 - code_regex_out));
code_consistency === 1;

One can replace this with is_code_exist * (1 - code_regex_out) === 0.

Impact

Circuit constraints could be improved further for performance.

Recommendations

We recommend to add these optimizations to the circuit to improve performance.

Remediation

The ZK Email Teamadded these optimizations in commit 9deaf804 ↗ and commit 8b63b004 ↗.

Zellic © 2024 ← Back to Contents Page 34 of 60

https://github.com/zkemail/ether-email-auth/commit/9deaf80435502c4d9c1a77465a0e8195f749e63d#diff-9885f218c9c9c4ad205549f6a887efa98fdb5a01d308809f0918affbec98319aL131-R137
https://github.com/zkemail/ether-email-auth/commit/8b63b0048de97599a5d4714dd7dd20a49f49cb7f

ZK Email Comprehensive Security Assessment August 30, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Enhancement for selector filtering in UniversalEmailRecoveryModule and
EmailRecoveryModule

A potential security concern has been discussed regarding the UniversalEmailRecoveryModule
and EmailRecoveryModule contracts. These modules reference the _execute function from the
ERC7579ExecutorBase contract, which internally invokes the executeFromExecutor function.

Initially, there was a concern that this function could allow the execution of functions
related to IERC7579Account.installModule, IERC7579Account.uninstallModule, and
IERC7579Account.executeUserOp due to the onlyEntryPointOrSelf modifier in the MSABa-
sic contract. However, it was clarified that there is a mechanism in place that checks if the target
is an installed validator within the recovery modules themselves, which should mitigate the risk of
calling unintended functions in normal ERC-7579 accounts.

In the context of Safe7579, which is a set of contracts developed by the Safe and Rhinestone teams
tomakeSafes compatiblewith 7579modules, theSafe account itself can be classified as a validator.
This situation may require additional consideration, as functions on the Safe/Safe7579 should be
accessible under certain conditions.

To address the scenario where the Safe account is used as a validator, it may be prudent to imple-
ment additional checks in the selector-filtering mechanism. Specifically, when the contract to be
recovered is the Safe (i.e., validator == msg.sender), only a specific subset of selectors (such as
addOwner and setThreshold) should be whitelisted. This would help prevent unintended function
executions while maintaining necessary functionality.

4.2. Test suite

While the overall test coverage quality was good, we found that tests for the revert conditions
could be improved, particularly in the newly added functions after the commit hash change from
3ae87c9a ↗ to b5694a9e ↗.

These areas lack comprehensive testing for failure scenarios, whichmay lead to undetected issues
in edge cases or improper error handling. We recommend increasing the depth of testing for revert
conditions, especially in thenewly introduced functions, to ensure robust handlingof failure scenar-
ios.

Buildinga robust test suite that includes thorough tests for bothpositive andnegativeoutcomeshas
multiple benefits:

• It finds bugs and design flaws early (preaudit or prerelease).
• It gives insight into areas for optimization (e.g., gas cost).

Zellic © 2024 ← Back to Contents Page 35 of 60

https://github.com/zkemail/ether-email-auth/commit/3ae87c9ac7381442c0b025553a45409c1699d929
https://github.com/zkemail/ether-email-auth/commit/b5694a9e0e49d07a862232f665dc4d0886c5a15f

ZK Email Comprehensive Security Assessment August 30, 2024

• It displays codematurity.
• It bolsters customer trust in your product.
• It improves understanding of how the code functions, integrates, and operates — for de-
velopers and auditors alike.

• It increases development velocity long-term.

Although creating and maintaining tests can be time-consuming, the long-term benefit is undeni-
able. Tests give developers confidence in their own changes, helping ensure that refactors or even
small fixes don't introduce unintended issues. This is especially useful for new developers or those
returning to a project after some time. Awell-designed test suite acts as a safety net, indicating that
existing functionality is most likely unaffected by code changes.

4.3. Multichain replay issue

In a recent discussion, the ZKEmail teamand external reviewers debated the potential risk of cross-
chain replay attacks when the EmailRecoveryModule is deployed with the same address across
multiple blockchains. The concern raised was that a proof used on one chain (e.g., chain A) could
be reused on another chain (e.g., chain B) due to the account_salt lacking chain-specific data like
a chain ID. This could pose a security risk, particularly for applications using ether-email-auth for
on-chainmessage authorization.

While the reviewers suggested that this could be a significant security vulnerability, the ZK Email
team argued that, at least for account recovery, this does not represent a major attack vector. They
emphasized that preventing such attacks should be handled at the application level, rather than by
modifying the protocol itself. The team believes that including chain-specific data, such as a chain
ID in the email subject, could degrade the user experience and should therefore remain optional.

This is the proposed approach:

• Application-levelmitigation—The ZKEmail team recommends that the responsibility for
preventing cross-chain replay attacks should liewith applicationdevelopers. By allowing
developers to decidewhether to include chain-specific data, the solution can be tailored
to different security needs without sacrificing UX for all users.

• Enhanced documentation — To ensure that application developers are aware of the po-
tential risks, the ZK Email teamplans to improve the documentation. This will include de-
tailed guidance on how to handle chain-specific data in emails tomitigate replay attacks.
By doing so, they aim to ensure that developers are fully informed about the implications
of their choices and can implement the necessary protections if needed.

By focusing on application-level controls and enhancing the documentation, the ZK Email team
seeks to balance security with a positive user experience, while ensuring that developers are
equipped to handle potential risks in their implementations.

Zellic © 2024 ← Back to Contents Page 36 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in thecontractsandcreatedawritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Module: EmailAccountRecovery.sol

Function: handleAcceptance(EmailAuthMsg emailAuthMsg, uint256 tem-
plateIdx)

The function processes and validates an acceptance by a new guardian, deploying and initializing a
new EmailAuth contract proxy if necessary, based on the provided email authenticationmessage.

Inputs

• emailAuthMsg
• Control: Fully controlled by the caller.
• Constraints: It must contain all necessary information for authentication
and authorization, emailAuthMsg.proof.isCodeExist must be true, and
it must pass verification in guardianEmailAuth, created using emailAu-
thMsg.proof.accountSalt.

• Impact: The parameter represents the email auth message sent from the
guardian.

• templateIdx
• Control: Fully controlled by the caller.
• Constraints: Must be the same emailAuthMsg.templateId and templateId
for the Accept request.

• Impact: The parameter represents the index of the subject template for ac-
ceptance.

Branches and code coverage

Intended branches

• Extracts the recovered account from the email subject based on emailAu-
thMsg.subjectParams and templateIdx.

Test coverage
• Computes the guardian's address using the recovered account and emailAu-
thMsg.proof.accountSalt.

Test coverage
• Validates the template ID andwhether isCodeExist is true in emailAuthMsg.proof.

Zellic © 2024 ← Back to Contents Page 37 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Test coverage
• Deploys a new EmailAuth contract as a proxy if the guardian's code length is zero and
initializes it with necessary parameters.

Test coverage
• If the guardian already has an EmailAuth contract, ensures its controller is the current
contract.

Test coverage
• Calls authEmail on the guardianEmailAuth contract to authenticate the email.

Test coverage
• Calls acceptGuardian with the guardian address, templateIdx, emailAu-
thMsg.subjectParams, and emailAuthMsg.proof.emailNullifier.

Test coverage

Negative behavior

• Revert if recoveredAccount is invalid or zero.
Negative test

• Revert if the current weight is larger than zero.
Negative test

• Revert if the computed template ID does not match emailAuthMsg.templateId.
Negative test

• Revert if emailAuthMsg.proof.isCodeExist is false.
Negative test

• Revert if the guardian's EmailAuth contract is not controlled by the current contract.
Negative test

• Revert if it fails to pass verification in the authEmail function of the guardianEmailAuth
contract.

Negative test
• Revert if the guardian has already accepted and the setting is complete or if the guardian
is in the process of recovery.

Negative test
• Revert if a recovery process is already in progress for the account.

Negative test
• Revert if the recovery process has not been activated for the account.

Negative test
• Revert if the guardian's status for the account is not REQUESTED.

Negative test

Function call analysis

• computeEmailAuthAddress(recoveredAccount, emailAuthMsg.proof.accountSalt)
• What is controllable? recoveredAccount and emailAu-
thMsg.proof.accountSalt.

Zellic © 2024 ← Back to Contents Page 38 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? The
intended transaction may not be fully executed if a revert occurs in the trans-
action of an AAWallet or SafeWallet that uses this contract as amodule.

• guardianEmailAuth.initDKIMRegistry(dkim())
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If
an arbitrary registry can be set, it would allow bypassing the checks for the
domain and public key included in the proof.

• guardianEmailAuth.initVerifier(verifier())
• What is controllable? N/A.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If
an arbitrary verifier can be set, it would allow completely bypassing the proof
verification.

• guardianEmailAuth.insertSubjectTemplate(computeAcceptanceTemplateId(idx),
acceptanceSubjectTemplates()[idx])

• What is controllable? idx.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• guardianEmailAuth.insertSubjectTemplate(computeRecoveryTemplateId(idx),
recoverySubjectTemplates()[idx])

• What is controllable? idx.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• guardianEmailAuth.authEmail(emailAuthMsg)

• What is controllable? emailAuthMsg.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If
the verification can be unexpectedly bypassed, any input data could be used,
putting the user's assets at risk.

• acceptGuardian(guardian, templateIdx, emailAuthMsg.subjectParams, emailAu-
thMsg.proof.emailNullifier)

• What is controllable? guardian, templateIdx, emailAu-
thMsg.subjectParams, and emailAuthMsg.proof.emailNullifier.

• If the return value is controllable, how is it used and how can it go wrong?
N/A.

Zellic © 2024 ← Back to Contents Page 39 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Function: handleRecovery(EmailAuthMsg emailAuthMsg, uint256 tem-
plateIdx)

The function processes the recovery based on an email from the guardian, verifies the provided
email authmessage, and ensures the guardian's EmailAuth contract is appropriately authorized.

Inputs

• emailAuthMsg
• Control: Fully controlled by the caller.
• Constraints: Must contain all necessary information for authentication, and
authorization must contain all necessary information for authentication and
authorization.

• Impact: The parameter represents the email auth message sent from the
guardian.

• templateIdx
• Control: Fully controlled by the caller.
• Constraints: Must be the same emailAuthMsg.templateId and templateId
for the Recovery request.

• Impact: Theparameter represents the indexof thesubject template for recov-
ery.

Branches and code coverage

Intended branches

• Extracts the recovered account from the email subject parameters
(emailAuthMsg.subjectParams) and template index (templateIdx).

Test coverage
• Computes the guardian's address using the recovered account and emailAu-
thMsg.proof.accountSalt.

Test coverage
• Computes the template ID using the templateIdx and specific encoding for the recovery
process.

Test coverage
• Initializes the guardianEmailAuth contract with the guardian's address.

Test coverage
• Authenticates the email by successfully verifying the provided emailAuthMsg using
guardianEmailAuth.authEmail.

Test coverage
• Calls processRecovery with the guardian address, templateIdx, emailAu-

Zellic © 2024 ← Back to Contents Page 40 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

thMsg.subjectParams, and emailAuthMsg.proof.emailNullifier.
Test coverage

Negative behavior

• Revert if recoveredAccount is invalid or zero.
Negative test

• Revert if the guardian is not deployed (i.e., the code length of the guardian's address is
zero).

Negative test
• Revert if the account is not activated.

Negative test
• Revert if the current weight does not meet the threshold.

Negative test
• Revert if the computed template ID does not match emailAuthMsg.templateId.

Negative test

Function call analysis

• guardianEmailAuth.authEmail(emailAuthMsg)
• What is controllable? emailAuthMsg.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow? If
the verification can be unexpectedly bypassed, any input data could be used,
putting the user's assets at risk.

• processRecovery(guardian, templateIdx, emailAuthMsg.subjectParams,
emailAuthMsg.proof.emailNullifier)

• What is controllable? guardian, templateIdx, emailAu-
thMsg.subjectParams, and emailAuthMsg.proof.emailNullifier.

• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

5.2. Module: EmailAuth.sol

Function: authEmail(EmailAuthMsg emailAuthMsg)

This function is responsible for verifyingwhether the EmailAuthMsg type parameter providedby the
user contains valid data and proof.

Inputs

• emailAuthMsg

Zellic © 2024 ← Back to Contents Page 41 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• Control: Fully controlled by the caller.
• Constraints: The domainName and publicKeyHash included in emailAu-
thMsg.proofmust be preregistered in a separate registry, and the emailNul-
lifier must not have been used previously. Additionally, the accountSalt
shouldmatch the valuepredefined in theEmailAuth contract. If the timestamp
is nonzero, it must be generated later than any previously used input data. Fi-
nally, these input data and emailAuthMsg.proof.proofmust pass the verifi-
cation code to confirm it as a valid ZK proof.

• Impact: This parameter required to verify the validity of the input data.

Branches and code coverage

Intended branches

• Marks the emailAuthMsg.proof.emailNullifier as used and updates the lasttimes-
tamp.

Test coverage

Negative behavior

• Revert if the template specified by emailAuthMsg.templateId does not exist.
Negative test

• Revert if the DKIM public key hash is invalid for emailAuthMsg.proof.domainName and
emailAuthMsg.proof.publicKeyHash.

Negative test
• Revert if usedNullifiers[emailAuthMsg.proof.emailNullifier] is already set to
true.

Negative test
• Revert if accountSalt does not match emailAuthMsg.proof.accountSalt.

Negative test
• Revert if the timestamp specified by emailAuthMsg.proof.timestamp is invalid.

Negative test
• Revert if the constructed expectedSubject does not match emailAu-
thMsg.proof.maskedSubject after removing the prefix emailAu-
thMsg.skipedSubjectPrefix.

Negative test
• Revert if verifier.verifyEmailProof(emailAuthMsg.proof) returns false.

Negative test

Function call analysis

• verifier.verifyEmailProof(emailAuthMsg.proof)
• What is controllable? emailAuthMsg.proof.
• If the return value is controllable, how is it used and how can it go wrong? It
is possible to pass verification using an input different from the one intended

Zellic © 2024 ← Back to Contents Page 42 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

by the user, potentially leading to the takeover of the user's wallet or the theft
of their assets.

• What happens if it reverts, reenters or does other unusual control flow? If
reentrancy were to occur, there is a risk that a previously used proof could be
reused; however, there are no points where reentrancy can occur.

5.3. Module: EmailRecoveryFactory.sol

Function: deployEmailRecoveryModule(bytes32 subjectHandlerSalt,
bytes32 recoveryModuleSalt, bytes calldata subjectHandlerBytecode,
address dkimRegistry, address validator, bytes4 functionSelector) //
Function prototype

The function deploys an EmailRecoveryModule along with its subject handler using provided de-
ployment parameters.

Inputs

• subjectHandlerSalt
• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: The parameter is used as salt for the deployment of the subject han-
dler contract.

• recoveryModuleSalt
• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Theparameter isusedassalt for thedeploymentof theemail recovery
module contract.

• subjectHandlerBytecode
• Control: Fully controlled by the caller.
• Constraints: Must be valid bytecode for a contract.
• Impact: Theparametercontains thebytecode for thesubjecthandler contract
to be deployed.

• dkimRegistry
• Control: Fully controlled by the caller.
• Constraints: Must be a valid address.
• Impact: The parameter specifies the address of the DKIM registry.

• validator
• Control: Fully controlled by the caller.
• Constraints: Must be a valid address.
• Impact: The parameter specifies the address of the validator to be recovered.

• functionSelector

Zellic © 2024 ← Back to Contents Page 43 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• Control: Fully controlled by the caller.
• Constraints: Must be a valid function selector.
• Impact: The parameter specifies the function selector for the recovery func-
tion to be called on the target validator.

Branches and code coverage (including function calls)

Intended branches

• Deploys the subject-handler contract using subjectHandlerSalt and subjectHandler-
Bytecode and initializes the subjectHandler address.

Test coverage
• Deploys the email-recovery–module contract using recoveryModuleSalt and initial-
izes the emailRecoveryModule address with references to verifier, dkimRegistry,
emailAuthImpl, subjectHandler, validator, and functionSelector.

Test coverage
• Emits the EmailRecoveryModuleDeployed event with emailRecoveryModule, subjec-
tHandler, validator, and functionSelector as arguments.

Test coverage
• Returns the addresses of the deployed emailRecoveryModule and subjectHandler.

Test coverage

5.4. Module: EmailRecoveryManager.sol

Function: cancelRecovery()

The function cancels the recovery request for the caller's account by deleting the current recovery
request associated with the caller's account.

Branches and code coverage

Intended branches

• Deletes the recovery request associated with the caller's account if a recovery process
is ongoing.

Test coverage

Negative behavior

• Revert if there is no recovery process in progress for the caller's account.
Negative test

Zellic © 2024 ← Back to Contents Page 44 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Function: completeRecovery(address account, bytes calldata recovery-
Data)

The function completes the recovery process for a given account by validating and executing the
recovery request.

Inputs

• account
• Control: Fully controlled by the caller.
• Constraints: Must not be a zero address.
• Impact: The parameter is the address of the account forwhich recovery is be-
ing completed.

• recoveryData
• Control: Fully controlled by the caller.
• Constraints: Must be the case that the keccak256 hash of recoveryData
matches the prestored recoveryRequest.recoveryDataHash in storage.

• Impact: The parameter includes the data required to recover the validator or
account.

Branches and code coverage

Intended branches

• Retrieves the recovery request for the given account.
Test coverage

• Retrieves the guardian configuration and checks if a recovery is configured.
Test coverage

• Validates that the current approval weight meets the threshold.
Test coverage

• Checks that the recovery request is within the valid time range.
Test coverage

• Validates the integrity of the provided recoveryData.
Test coverage

• Deletes the recovery request for the account.
Test coverage

• Calls the recover function with the account and recovery data.
Test coverage

Negative behavior

• Revert if the account address is zero.
Negative test

• Revert if no recovery is configured.

Zellic © 2024 ← Back to Contents Page 45 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Negative test
• Revert if the current weight does not meet the threshold.

Negative test
• Revert if the account is not activated.

Negative test
• Revert if the necessary delay has not passed.

Negative test
• Revert if the recovery request has expired.

Negative test
• Revert if the recovery data hash is invalid.

Negative test

Function call analysis

• recover(account, recoveryData)
• What is controllable? account and recoveryData.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or doesother unusual control
flow? If the user executes incorrect recoveryData, it could freeze
the assets in the wallet or interfere with its proper functioning.

Function: configureRecovery(address[] memory guardians, uint256[] mem-
ory weights, uint256 threshold, uint256 delay, uint256 expiry)

The function configures recovery settings for the caller's account, including guardians, threshold,
delay, and expiry.

Inputs

• guardians
• Control: Fully controlled by the caller.
• Constraints: Must have the same length as weights. Each guardian address
must not be zero or the caller's own address.

• Impact: The parameter is an array of guardian addresses.
• weights

• Control: Fully controlled by the caller.
• Constraints: Must have the same length as guardians, and eachweightmust
be greater than zero.

• Impact: Theparameter is anarrayofweights corresponding toeachguardian.
• threshold

• Control: Fully controlled by the caller.

Zellic © 2024 ← Back to Contents Page 46 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• Constraints: Must be greater than zero and less than or equal to the total
weight of the guardians.

• Impact: The parameter sets the weight threshold required for recovery.
• delay

• Control: Fully controlled by the caller.
• Constraints: None specified.
• Impact: The parameter defines the delay period before recovery can be exe-
cuted.

• expiry
• Control: Fully controlled by the caller.
• Constraints: None specified.
• Impact: The parameter sets the expiry time after which the recovery attempt
becomes invalid.

Branches and code coverage

Intended branches

• Verifies that this is the initial setup by checking if the threshold is zero.
Test coverage

• Calls setupGuardians() to initialize the guardians, their weights, and the threshold. This
includes setting up the guardians and verifying compliance with the constraints.

Test coverage
• Initializes the RecoveryConfigwith delay andexpiry and calls updateRecoveryConfig().

Test coverage

Negative behavior

• Revert if the configuration has already been set (setup already called).
Negative test

• Revert if the lengths of guardians and weights arrays do not match while calling setup-
Guardians.

Negative test
• Revert if any guardian address is zero or the caller's own address while calling _ad-
dGuardian in setupGuardians.

Negative test
• Revert if any weight is zero while calling _addGuardian in setupGuardians.

Negative test
• Revert if the threshold is zero.

Negative test
• Revert if the threshold exceeds the total weight of guardians after initialization.

Negative test
• Revert if anyguardianaddress is alreadyaguardianwhile calling_addGuardian insetup-
Guardians.

Negative test

Zellic © 2024 ← Back to Contents Page 47 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Function: updateRecoveryConfig(RecoveryConfig memory recoveryConfig)

The function updates and validates the recovery configuration for the caller's account.

Inputs

• recoveryConfig
• Control: Fully controlled by the caller.
• Constraints: delay must not be greater than expiry, and expiry - delay
must be no less than MINIMUM_RECOVERY_WINDOW.

• Impact: The parameter sets the new recovery configuration parameters for
the caller's account.

Branches and code coverage

Intended branches

• Obtains the caller's account address using msg.sender.
Test coverage

• Validates that the account has been previously configured by checking if the threshold is
greater than zero.

Test coverage
• Validates that the delay is not greater than the expiry.

Test coverage
• Validates that the recovery window (expiry - delay) is at least MINI-
MUM_RECOVERY_WINDOW.

Test coverage
• Updates the recoveryconfiguration for thecaller's account in therecoveryConfigsmap-
ping.

Test coverage

Negative behavior

• Revert if the account is not configured (threshold is zero).
Negative test

• Revert if the delay is greater than the expiry in recoveryConfig.
Negative test

• Revert if the recoverywindow (expiry - delay) is less than MINIMUM_RECOVERY_WINDOW.
Negative test

• Revert if a recovery is in process for the account (due to the onlyWhenNotRecovering
modifier).

Negative test

Zellic © 2024 ← Back to Contents Page 48 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

5.5. Module: EmailRecoveryModule.sol

Function: onInstall(bytes calldata data)

The function initializes themodule with the provided threshold and guardians.

Inputs

• data
• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: The parameter is the encoded data required for recovery configura-
tion.

Branches and code coverage

Intended branches

• Decodes the data parameter to extract isInstalledContext, guardians, weights,
threshold, delay, and expiry.

Test coverage
• Verifies if themodule is installed by checking the validator using the isInstalledCon-
text.

Test coverage
• Calls configureRecoverywith the decoded guardians, weights, threshold, delay, and
expiry.

Test coverage

Negative behavior

• Revert if the data parameter is zero length.
Negative test

• Revert if themodule's validator is invalid.
Negative test

Function call analysis

• configureRecovery(guardians, weights, threshold, delay, expiry)
• What is controllable? guardians, weights, threshold, delay, and expiry.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Zellic © 2024 ← Back to Contents Page 49 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Function: onUninstall(bytes calldata /* data */)

The function deinitializes the recovery configuration for the calling account.

Branches and code coverage

Intended branches

• Deletes the recovery configuration for the calling account.
Test coverage

• Deletes the recovery request for the calling account.
Test coverage

• Removes all guardians associated with the calling account.
Test coverage

• Deletes the guardian configuration for the calling account.
Test coverage

Negative behaviour

• Revert if recovery is in process for the account (due to the onlyWhenNotRecoveringmod-
ifier).

Negative test

5.6. Module: EmailRecoveryUniversalFactory.sol

Function: deployUniversalEmailRecoveryModule(bytes32 subjectHandler-
Salt, bytes32 recoveryModuleSalt, bytes calldata subjectHandlerByte-
code, address dkimRegistry)

The function deploys a universal email recoverymodule alongwith its subject handler.

Inputs

• subjectHandlerSalt
• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Theparameter is usedas the salt for the subject-handler deployment.

• recoveryModuleSalt
• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: The parameter is used as the salt for the recovery-module deploy-
ment.

• subjectHandlerBytecode
• Control: Fully controlled by the caller.

Zellic © 2024 ← Back to Contents Page 50 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• Constraints: Must be valid bytecode for the subject-handler contract.
• Impact: Theparametercontains thebytecodeof thesubject-handlercontract.

• dkimRegistry
• Control: Fully controlled by the caller.
• Constraints: Must be a valid address.
• Impact: The parameter represents the address of the DKIM registry.

Branches and code coverage

Intended branches

• Deploys the subject handler using the provided subjectHandlerSalt and subjec-
tHandlerBytecode.

Test coverage
• Deploys the email-recoverymodule using the provided recoveryModuleSalt, verifier,
dkimRegistry, emailAuthImpl, and the deployed subject handler.

Test coverage
• Returns the addresses of the deployed email-recoverymodule and subject handler.

Test coverage

Negative behavior

• Revert if the subject-handler deployment fails.
Negative test

• Revert if the email-recoverymodule deployment fails.
Negative test

Function call analysis

• Create2.deploy(0, subjectHandlerSalt, subjectHandlerBytecode)
• What is controllable? subjectHandlerSalt and subjectHandlerBytecode.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.
• new UniversalEmailRecoveryModule{ salt: recoveryModuleSalt }(verifier,
dkimRegistry, emailAuthImpl, subjectHandler)

• What is controllable? recoveryModuleSalt and dkimRegistry.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• Whathappens if it reverts, reentersordoesotherunusual control flow? N/A.

Zellic © 2024 ← Back to Contents Page 51 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

5.7. Module: GuardianManager.sol

Function: addGuardian(address guardian, uint256 weight)

The function adds a guardian for the caller's account with a specifiedweight.

Inputs

• guardian
• Control: Fully controlled by the caller.
• Constraints: Must not be a zero address or the address of the caller.
• Impact: The parameter is the address of the guardian to be added.

• weight
• Control: Fully controlled by the caller.
• Constraints: Must be greater than zero.
• Impact: The parameter represents the weight assigned to the guardian.

Branches and code coverage

Intended branches

• Checks if the initial setup has been called by verifying the threshold.
Test coverage

• Validates the guardian address andweight.
Test coverage

• Adds the guardian to the guardian's storage.
Test coverage

• Increments the guardian count and total weight in the guardian configuration.
Test coverage

Negative behavior

• Revert if recovery is in process for the account (due to the onlyWhenNotRecoveringmod-
ifier).

Negative test
• Revert if the threshold is zero, indicating setup has not been called.

Negative test
• Revert if the guardian address is zero or the caller's own address.

Negative test
• Revert if the weight is zero.

Negative test
• Revert if the address is already a guardian.

Negative test

Zellic © 2024 ← Back to Contents Page 52 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Function: changeThreshold(uint256 threshold)

The function changes the threshold for guardian approvals for the caller's account.

Inputs

• threshold
• Control: Fully controlled by the caller.
• Constraints: Must be greater than zero and less than or equal to the total
weight of the guardians.

• Impact: The parameter sets the new threshold for guardian approvals.

Branches and code coverage

Intended branches

• Checks if the initial setup has been called by verifying the threshold.
Test coverage

• Validates that the new threshold is not greater than the total guardian weight.
Test coverage

• Validates that the new threshold is greater than zero.
Test coverage

• Updates the threshold in the guardian configuration for the caller's account.
Test coverage

Negative behavior

• Revert if the threshold is zero, indicating setup has not been called.
Negative test

• Revert if the new threshold is greater than the total guardian weight.
Negative test

• Revert if the new threshold is zero.
Negative test

• Revert if recovery is in process for the account (due to the onlyWhenNotRecoveringmod-
ifier).

Negative test

Function: removeGuardian(address guardian)

The function removes a guardian for the caller's account.

Inputs

• guardian

Zellic © 2024 ← Back to Contents Page 53 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• Control: Fully controlled by the caller.
• Constraints: Must be an existing guardian address for the caller's account.
• Impact: The parameter is the address of the guardian to be removed.

Branches and code coverage

Intended branches

• Retrieves the current guardian configuration and storage for the caller's account.
Test coverage

• Removes the guardian from the guardian's storage.
Test coverage

• Validates that the new total weight of guardians does not fall below the threshold.
Test coverage

• Decrements the guardian count and total weight in the guardian configuration.
Test coverage

• Decreases the acceptedweight if the guardian's status was ACCEPTED.
Test coverage

Negative behavior

• Revert if the guardian is not found in the storage.
Negative test

• Revert if the new total weight is less than the threshold.
Negative test

• Revert if recovery is in process for the account (due to the onlyWhenNotRecoveringmod-
ifier).

Negative test

5.8. Module: SafeEmailRecoveryModule.sol

Function: resetWhenDisabled(address account) // Function prototype

The function resets the guardian states for the account when themodule is disabled.

Inputs

• account
• Control: Fully controlled by the caller.
• Constraints: Mustbeanon-zeroaddressand themodulemustnotbeenabled
for the specified account.

• Impact: The parameter specifies the account for which the guardian states
will be reset.

Zellic © 2024 ← Back to Contents Page 54 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Branches and code coverage

Intended branches

• Deletes the recovery configuration and pending recovery requests for the caller's ac-
count.

Test coverage
• Removes all guardian settings for the caller's account and deletes the guardian configu-
rations.

Test coverage

Negative behavior

• Revert if the account is the zero address.
Negative test

• Revert if themodule is currently enabled for the specified account.
Negative test

5.9. Module: UniversalEmailRecoveryModule.sol

Function: allowValidatorRecovery(address validator, bytes memory isIn-
stalledContext, bytes4 recoverySelector) // Function prototype

The function allows a validator and function selector to be used for recovery.

Inputs

• validator
• Control: Fully controlled by the caller.
• Constraints: Must be a valid module validator for the caller's account.
• Impact: The parameter specifies the validator to be allowed for recovery.

• isInstalledContext
• Control: Fully controlled by the caller.
• Constraints: Additional context data required to verify if the module is in-
stalled.

• Impact: The parameter provides additional context for module-installation
validation.

• recoverySelector
• Control: Fully controlled by the caller.
• Constraints: Must not be an unsafe selector. Actual cases include onInstall,
onUninstall, execute, setFallbackHandler, setGuard, or bytes4(0).

• Impact: The parameter specifies the function selector to allow for recovery.

Zellic © 2024 ← Back to Contents Page 55 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Branches and code coverage

Intended branches

• Validates that the validator is indeed a module installed for the caller's account using
isInstalledContext.

Test coverage
• Ensures that the total count of validators for the caller's account does not exceed
MAX_VALIDATORS.

Test coverage
• Adds the validator to the validators list and increments the validatorCount for the
caller's account.

Test coverage
• Maps the allowed recovery selector to the validator and caller's account in allowedSe-
lectors.

Test coverage

Negative behavior

• Revert if the provided validator is not a valid module installed for the caller's account.
Negative test

• Revert if the total count of validators for the caller's account has already reached
MAX_VALIDATORS.

Negative test
• Revert if the provided recoverySelector is unsafe. Actual cases include onInstall,
onUninstall, execute, setFallbackHandler, setGuard, or bytes4(0).

Negative test
• Revert if the recovery module for the caller's account is not initialized (due to the only-
WhenInitializedmodifier).

Negative test

Function: disallowValidatorRecovery(address validator, address prevVal-
idator, bytes4 recoverySelector) // Function prototype

The function disallows a validator and function selector that has been configured for recovery.

Inputs

• validator
• Control: Fully controlled by the caller.
• Constraints: Must be an existing validator in the caller's validator list.
• Impact: The parameter specifies the validator to be disallowed for recovery.

• prevValidator
• Control: Fully controlled by the caller.
• Constraints: Must be the previous validator in the validator's linked list.

Zellic © 2024 ← Back to Contents Page 56 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

• Impact: Theparameter specifies theprevious validator in the linked list for the
one to be removed.

• recoverySelector
• Control: Fully controlled by the caller.
• Constraints: Mustmatch the selector previously allowed for the specified val-
idator.

• Impact: The parameter specifies the function selector to be disallowed for re-
covery.

Branches and code coverage

Intended branches

• Removes the validator from the validators list and decrements the validatorCount for
the caller's account.

Test coverage
• Validates that the allowed selector for the specified validator matches the provided re-
coverySelector.

Test coverage
• Deletes the allowed selectormapping for the specified validator and the caller's account.

Test coverage

Negative behavior

• Revert if the allowed selector for the specified validator does notmatch the provided re-
coverySelector.

Negative test
• Revert if the recovery module for the caller's account is not initialized (due to the only-
WhenInitializedmodifier).

Negative test

Function: onInstall(bytes calldata data)

The function handles the installation of themodule with the provided configuration data.

Inputs

• data
• Control: Fully controlled by the caller.
• Constraints: Must be a nonzero length bytes array.
• Impact: The parameter contains the configuration data for module installa-
tion.

Zellic © 2024 ← Back to Contents Page 57 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Branches and code coverage

Intended branches

• Decodes the data to extract the configuration parameters and initializes the validators
list for the caller's account.

Test coverage
• Calls allowValidatorRecovery to set up the initial validator and selector for recovery.

Test coverage
• Calls configureRecovery to set up the recovery configuration including guardians,
weights, threshold, delay, and expiry.

Test coverage

Negative behavior

• Revert if the data is empty.
Negative test

Function: onUninstall(bytes calldata data)

The function handles the uninstallation of themodule and clears the recovery configuration.

Inputs

• data
• Control: Fully controlled by the caller.
• Constraints: Unused parameter.
• Impact: The parameter is ignored in this function.

Branches and code coverage

Intended branches

• Retrieves the list of allowed validators for the caller's account and clears their allowed
selectors.

Test coverage
• Removes all validators from the validators list and resets the validatorCount for the
caller's account.

Test coverage
• Deletes the recovery configuration and pending recovery requests for the caller's ac-
count.

Test coverage
• Removes all guardian settings for the caller's account.

Test coverage

Zellic © 2024 ← Back to Contents Page 58 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

Negative behavior

• Revert if recovery is in process for the account (due to the onlyWhenNotRecoveringmod-
ifier).

Negative test

Zellic © 2024 ← Back to Contents Page 59 of 60

ZK Email Comprehensive Security Assessment August 30, 2024

6. Assessment Results At the time of our assessment, the reviewed codewas not deployed to themainnet.

During our assessment on the scoped ZK Email contracts, we discovered 12 findings. One critical
issuewas found. Fourwere of high impact, fivewere of low impact, and the remaining findingswere
informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 60 of 60

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About ZK Email
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Allowing bypass of proof verification via unrestricted skipedSubjectPrefix
	Regular expression flaw related to email in circuit
	Incorrect public input range check
	The zk-regex audit fixes are not incorporated
	Indexes in circuits are not checked to be valid
	Incorrect constraints in HashSign
	The lasttimestamp update mechanism flaw in EmailAuth
	Unnecessary complexity in resetWhenDisabled function implementation
	DKIM signatures before 2001 may break the timestamp logic
	Invitation code and email address may overlap, leading to unexpected behavior
	Minor inaccuracies in documentation of SelectRegexReveal
	Circuits could be further optimized

	Discussion
	Enhancement for selector filtering in UniversalEmailRecoveryModule and EmailRecoveryModule
	Test suite
	Multichain replay issue

	Threat Model
	Module: EmailAccountRecovery.sol
	Module: EmailAuth.sol
	Module: EmailRecoveryFactory.sol
	Module: EmailRecoveryManager.sol
	Module: EmailRecoveryModule.sol
	Module: EmailRecoveryUniversalFactory.sol
	Module: GuardianManager.sol
	Module: SafeEmailRecoveryModule.sol
	Module: UniversalEmailRecoveryModule.sol

	Assessment Results
	Disclaimer

